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Abstract: The influence of dual-heterostructure of grain size and precipitates on the mechanical properties of the AZ91 
alloy extruded sheet prepared by small extrusion ratio was investigated. Compared to the sample with the extrusion 
ratio (ER) of 12.8 (i.e., ER12.8 sample), the ER3.9 and ER6.4 samples present a remarkable coarse and fine-grained 
layers with heterogeneous fine-dispersed precipitates. Moreover, a large number of banded precipitates are observed in 
the fine-grained layers of the ER3.9 sample. The ER6.4 sample has an excellent combination of strength and ductility 
due to a balance of heterogeneous deformation-induced (HDI) stress and precipitates. Although the ER3.9 sample 
shows the highest HDI stress and Schmid factor for basal slip to improve ductility, more banded precipitates still play a 
dominate role in deteriorating its mechanical properties. 
Key words: AZ91 alloy; dual-heterostructure; precipitates; mechanical properties; heterogeneous deformation-induced 
(HDI) stress 
                                                                                                             

 
 
1 Introduction 
 

Mg alloys, as the lightest structural metallic 
materials, have been widely used in building 
construction, automobile, power and aerospace,  
etc., which greatly relieve present challenge of 
energy crisis [1−3]. However, a few activated slip 
systems lead to low ductility at room temperature, 
restricting their engineering applications [4,5]. 
Therefore, it is urgent to search a feasible method to 
achieve outstanding combination of strength and 
ductility of Mg alloys.  

Recently, WU et al [6] prepared the pure    
Ti with heterogeneous lamella structure, which  
was composed of deformed coarse grains and 

recrystallized ultrafine grains. Mechanical tests 
indicated that it exhibited a strength comparable to 
ultrafine-grained metals and ductility similar to that 
of conventional coarse-grained metals, evading  
the conventional trade-off between strength and 
ductility. Some similar studies with hetero- 
structures, such as IF steel [7], Ni/Cu/Ni [8] and 
Cu−Cu10Zn, [9] display excellent strength− 
ductility synergy. Among these materials, the soft 
and hard domains have dramatic differences in flow 
stress. The geometrically necessary dislocations 
(GNDs) will accumulate at the domain interface of 
soft domain to accommodate the strain gradient 
during deformation [10,11]. The increasing strain 
gradient at the domain interface generates more 
GNDs due to the larger strain partitioning, which 
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induces extra heterogeneous deformation-induced 
(HDI) stress (previously referred to as back stress) 
strengthening and hardening, in addition to 
conventional dislocation hardening [12]. 

Metal materials with heterostructures can 
greatly alleviate traditional inversion relationship of 
strength−ductility dilemma. Most of researches 
were only focused on the design of heterogeneous 
grain size. Generally, the heterogeneities of metal 
materials include the chemical composition, texture, 
hardness and precipitate, etc [10]. It has been 
reported that dual-heterostructure metal materials 
can yield a good combination of strength and 
ductility by regulating the component heterogeneity, 
such as Mg−1Gd/Mg−13Gd (wt.%) alloy with the 
dual-heterostructure of grain size and texture [13], 
the brass with the heterogeneous lamella and 
gradient structure [14], the low carbon martensitic 
steel with the dual-phase heterostructure of 
martensite and ferrite [15]. However, the influence 
of dual-heterostructure of grain size and precipitates 
on mechanical properties has been rarely studied in 
previous researches. In this work, following the 
principle of low cost and simple preparation process, 
the AZ91 alloy with dual-heterostructure of grain 
size and precipitates was successfully prepared by 
small extrusion ratio (ER) due to its intense 
precipitation potential. The effects of dual- 
heterostructure on mechanical properties of AZ91 
extruded sheet were discussed in detail. The 
mechanisms with excellent strength−ductility 
synergy were systematically illustrated. 
 
2 Experimental 
 

In the present study, the AZ91 (Mg−9.06Al− 
0.59Zn, wt.%) ingots were initially cut into the 

cuboid blocks with the dimension of 15 mm × 
15 mm × 35 mm. As shown in Fig. 1, these cuboid 
blocks were solid-solution (SS) treated at 420 °C 
for 20 h and quenched in water immediately. After 
that, the treated cuboid blocks were extruded into 
sheets with the thickness of 1.5, 3 and 5 mm 
(normal direction, ND) by the square extrusion 
cylinder dies at 280 ℃ [16]. The corresponding 
ERs were 12.8, 6.4 and 3.9, which were denoted as 
ER12.8, ER6.4 and ER3.9 samples, respectively. 

The characterizations of microstructures and 
texture of ER12.8, ER6.4 and ER3.9 samples were 
performed by the optical microscopy (OM) and 
field-emission scanning electron microscope (SEM, 
JOEL JSM 7800F) equipped with an HKL electron 
backscatter diffraction (EBSD) detector. The  
ER6.4 sample under 6.8% strain was cut into the 
transmission electron microscope (TEM, FEI 
TECNAI G2 F20) thin foils with 0.5 mm in 
thickness. It was ground and polished to ~50 nm in 
thickness, and then perforated by Ar ion milling. 
The tension samples were dog-bone shaped with the 
gauge dimension of 18 mm (extrusion direction,  
ED) × 4 mm (transverse direction, TD). Both 
uniaxial tension and loading−unloading−reloading 
(LUR) tests were carried out on a universal testing 
machine along ED with a strain rate of 1×10−3 s−1 at 
room temperature. During LUR tests with program 
control mode, the sample was loaded to a set 
displacement value under a rate of 0.75 mm/min, 
unloaded, and then reloaded to 20 N under the  
same conditions. To ensure the mechanical data 
reliability, the tensile tests and LUR tests for each 
sample were repeated three times. The micro- 
hardness tests with a 200 g load for 10 s were 
performed by the UHVSY-1000ZB Vickers 
hardness tester. 

 

 
Fig. 1 Extrusion process of samples at different ERs 

https://www.sciencedirect.com/topics/materials-science/martensitic-stainless-steel
https://www.sciencedirect.com/topics/materials-science/martensitic-stainless-steel
https://www.sciencedirect.com/topics/materials-science/heterojunction
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3 Results 
 
3.1 Mechanical property 

Figures 2(a, b) show the true stress−true strain 
curves and the variations in tensile properties of the 
samples at different ERs, respectively. It can be 
seen that both the ultimate tensile strength (UTS) 
and uniform elongation (UE) of the samples 
increase first and then decrease with increasing  
ERs, while the yield strength (YS) shows a slight 
downward trend. As given in Table 1, the ER6.4 
sample has an outstanding combination of YS 
(181.3 MPa), UTS (400.5 MPa) and UE (18.3%) as 
compared with the ER3.9 and ER12.8 samples. It 
should be noted that the tensile curves of the ER6.4 
and ER12.8 samples present a serrated flow. This  
 

 
Fig. 2 True stress−strain curves of ER12.8, ER6.4 and 
ER3.9 samples (a), and corresponding variation trend of 
tensile properties (b) 
 
Table 1 Tensile properties of samples at different ERs 

Sample YS/MPa UTS/MPa UE/% 

ER3.9 194.8±4.2 341.3±7.5 10.0±1.9 

ER6.4 181.3±4.7 400.5±11.8 18.3±2.1 

ER12.8 174.0±5.1 382.2±8.9 15.4±2.3 

behavior is mainly attributed to the dynamic 
interaction between the mobile dislocation 
momentarily arrested at forest dislocations and the 
Al and Zn solute atoms [17], which has also been 
studied in the Mg–8.0Al–0.7Zn–0.2Mn (wt.%) 
alloy [18]. However, the serrated flow behavior in 
the ER3.9 sample does not appear, which may be 
due to the generation of abundant banded Mg17Al12 
precipitates, resulting in the decrease of Al solute 
atoms and the weakening of pinning effect. 
 
3.2 Microstructure 

Figures 3(a, b) present the typical dendritic 
structure of cast AZ91 alloy before SS treatment, 
which is identified as the γ-Mg17Al12 by energy 
dispersive spectrometer (EDS), as shown in 
Figs. 3(e, f). This finding is consistent with the 
previously reported results by YUAN et al [19]. 
After SS treatment, most of precipitates and the 
eutectic structure (α + γ) are dissolved (Fig. 3(c)). 
Meanwhile, the inverse pole figure (IPF) map in 
Fig. 3(d) indicates that the average grain size (AGS) 
of the sample should be more than 500 μm and the 
orientation distribution is random in visible grains. 

Figures 4(a−c) show the optical micrographs 
of the three samples on the ED−ND planes.      
It can be seen that the black regions of the  
samples gradually increase with decreasing ERs. 
These black regions are composed of the fine 
recrystallized grains and precipitates observed   
by the SEM micrographs. Note that significant 
amounts of banded Mg17Al12 precipitates, confirmed 
by EDS (Fig. 4(i)), are distributed in the ER3.9 
sample, which leads to the initiation and 
propagation of cracks, deteriorating its mechanical 
properties. Based on the statistical results obtained 
by Image-Pro plus6.0 software (Figs. 4(b, c)), the 
area proportions of fine-grained layers in the ER3.9 
and ER6.4 samples account for 32.2% and 12.7%, 
respectively. Therefore, the ER6.4 and ER3.9 
samples exhibit a dual-heterostructure of grain and 
precipitates, especially the ER3.9 sample. 

According to the SEM micrographs, most of 
precipitates are rod-like or spherical and distributed 
along the grain boundaries, owing to the fact that 
the Al atoms segregated at grain boundaries 
dynamically precipitate in the form of Mg−Al phase 
during extrusion [20]. Moreover, the amount of 
precipitates in the fine-grained layers is much more 
than that in the coarse-grained layers. On the one 
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Fig. 3 SEM micrographs of sample before (a, b) and after (c) SS treatment; IPF map of sample after SS treatment (d); 
EDS point-scans of A (e) and B (f) marked in Fig. 3(b) 
 

 

Fig. 4 Optical micrographs (a−c) and SEM micrographs (d−i) of ER12.8 (a, d, g), ER6.4 (b, e, h), and ER3.9 (c, f, i) 
samples 
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hand, the particle-stimulated nucleation (PSN) 
mechanism indicates that these precipitates, with a 
size larger than 1 μm, can provide nucleation sites 
for dynamic recrystallization [21−24]. On the other 
hand, the pinning effect of grain boundaries by 
precipitates inhibits the growth of dynamically 
recrystallized grains. Therefore, the growth rate of 
fine-grained layers with dense precipitates is lower 
than that of coarse-grained layers with precipitate- 
free regions, forming a dual-heterostructure of grain 
size and precipitates. 
 
3.3 Fracture morphology 

Figure 5 shows the fracture surfaces of 
samples at different ERs. As ERs decrease, the 
dimples size gradually reduces (Figs. 5(a−c)), 
which is related to the grain refinement. As   
shown in high-magnification SEM micrographs 
(Figs. 5(d, e)), some precipitates are observed in the 
brittle fracture zones and the bottom of dimples in 
the ER12.8 and ER6.4 samples. The ER12.8 sample 
has more brittle fracture zones than the ER6.4 
sample, which is one of the reasons why the 
ductility of the ER6.4 sample is higher than that of 
the ER12.8 sample. In addition, the banded 
precipitates and cracks are detected in the ER3.9 
sample, which is not conducive to the improvement 

of its ductility. The fracture behavior of the three 
samples is consistent with their mechanical 
properties. 

 
4 Discussion 
 
4.1 Balance of strength and ductility 

Figures 6(a−c) show the IPF maps of the 
ER12.8, ER6.4 and ER3.9 samples, respectively. 
Obviously, the heterogeneous microstructure 
becomes more remarkable with decreasing ERs, 
and all samples present complete recrystallization. 
Meanwhile, the area proportion of fine-grained 
layers gradually increases. Note that the samples 
show some zero resolution regions owing to the 
existence of precipitates, especially the fine-grained 
layers in the ER3.9 sample. The statistical results 
obtained by Channel 5 software indicate that the 
AGS of the three samples decreases from 13.1 to 
4.8 μm (Figs. 6(d−f)). This reduction in AGS, in 
accordance with the Hall−Petch law, is one of the 
reasons why the ER3.9 sample exhibits the highest 
YS. 

As we know, the basal slip of Mg alloys 
possesses a low critical resolved shear stress 
(CRSS), which makes it easy to activate at room 
temperature [8,25]. The Schmid factor (SF) related  

 

 
Fig. 5 SEM micrographs of fracture surfaces after tensile tests: (a, d) ER12.8 sample; (b, e) ER6.4 sample; (c, f) ER3.9 
sample 
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Fig. 6 IPF maps (a−c), grain size distribution (d−f), (0001) pole figures (g−i) and corresponding SF distributions in (0001) 
pole figures for basal slip (j−l): (a, d, g, j) ER12.8 sample; (b, e, h, k) ER6.4 sample; (c, f, i, l) ER3.9 sample 
 
to texture plays an important role in the activation 
of basal slip and influences the mechanical 
properties of samples [24,26−28]. The (0001) pole 
figures of the three samples and corresponding SF 
distribution for basal slip on them are presented in 
Figs. 6(g−l). The ER12.8 and ER6.4 samples 
exhibit a basal texture, with their basal planes being 

nearly parallel to the ED. Their maximum texture 
intensity is mainly concentrated in the hard 
orientation region on the SF distribution maps 
(SF=0.25). Unlike the ER12.8 and ER6.4 samples, 
the grained c-axis in the ER3.9 sample are inclined 
by 21.7°−45.4° from the ND towards ED and TD. 
The majority of texture components in the ER3.9 
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sample are located in the soft orientation (SF=0.31), 
which is conducive to activating basal slip and 
coordinating plastic deformation when stretched 
along the ED. However, the ductility of the ER3.9 
sample is actually lower than that of the ER6.4 and 
ER12.8 samples.  

As illustrated in Fig. 7(a), the microhardness 
of the fine-grained layers in the ER3.9 sample is 
~HV 82.1, which is significantly higher than    
that of the coarse-grained layers (~HV 61.8) due  
to the combined effects of grain boundaries and 
precipitates. The hardness value (HV 71.8) of 
domain interface falls between them. Thus, the 
coarse and fine-grained layers should exist   
certain extent mechanical incompatibility during 
heterogeneous deformation. This leads to the 
generation of strain gradient and induces the 
accumulation of GNDs at domain boundary in the 
coarse-grained layers to accommodate this strain 
gradient, inducing back stress [9,29,30]. In terms of 
physical process, the forward stress is formed at 
domain boundary in the fine-grained layers. These 
two stresses are collectively known as HDI   
stress, and they work together to produce HDI 

strengthening and hardening effect [15,29]. 
Moreover, the high density precipitates in the 
fine-grained layers make them harder, which 
exacerbates the accumulation of GNDs at domain 
boundary, further boosting the HDI stress [21]. The 
above microstructure characterization indicates  
that both the ER6.4 and ER3.9 samples show a 
dual-heterostructure of grain size and precipitates, 
especially the ER3.9 sample. Thus, compared with 
the ER6.4 and ER12.8 samples, the ER3.9 sample 
theoretically should exhibit higher HDI stress. 

In order to quantitatively study the evolution 
of HDI stress after the heterogeneous deformation, 
the loading−unloading−reloading (LUR) tests are 
carried out, as shown in Fig. 7(b). Note that three 
samples present plump hysteresis loops at early 
deformation stage (Fig. 7(c)), which demonstrates 
the existence of a strong Bauschinger effect. The 
HDI stress can be calculated by Eq. (1), as derived 
in previous literature [31−34]:   
σHDI=(σr+σu)/2                            (1)  
where σr and σu represent the reloading yield 
stress and unloading yield stress, respectively, as 

 

 
Fig. 7 Microhardness of ER3.9 sample (a); LUR tensile curves of ER12.8, ER6.4 and ER3.9 samples (b); Partially 
amplified hysteresis loops of three samples (c); Calculated HDI stress (d) based on Fig. 7(b) 
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presented in Fig. 7(c). Figure 7(d) shows the 
development of HDI stress in the three samples as 
the strain increases. It can be seen that their HDI 
stress increases almost linearly before reaching a 
strain of 6%. Thereafter, the HDI stress gradually 
levels off, which is related to the saturated GNDs 
and the interaction between the GNDs and mobile 
dislocations, impeding the pile-up of GNDs towards 
domain boundary. Besides, the HDI stress of the 
ER3.9 sample is higher than that of the ER6.4   
and ER12.8 samples during deformation. This 
suggests that the dual-heterostructure of grain   
size and precipitates can produce a higher     
HDI strengthening and hardening effect, which 
contributes to the extra strengthening and strain. 

However, a large number of banded Mg17Al12 
precipitates in the fine-grained layers of the ER3.9 
sample become the crack sources and greatly 
deteriorate the ductility (Fig. 4(i)). Combined with 
the tensile properties of the three samples, it is 
concluded that the optimal HDI strengthening and 
hardening effect and higher SF for basal slip should 
not be the dominant role in improving the 
mechanical properties of the ER3.9 sample due to 
the existence of profuse banded precipitates. For the 

ER6.4 sample, it has an area proportion of 12.7%  
in the fine-grained layers and decreased banded 
precipitates. Figures 8(a, b) indicate that a large 
number of dislocations in the ER6.4 sample are 
pinned by precipitates at strain of 6.8%. The 
high-resolution TEM images in Figs. 8(d, e) 
demonstrate that a misfit strain field exists between 
precipitates and dislocations, further confirming 
this pinning effect. It should be pointed that unlike 
bowed dislocation lines that intersect precipitates 
(marked by yellow arrows), these straight 
dislocations embed in precipitates (marked by blue 
arrows), which may be the consequence of 
dislocation-assisted nucleation rather than the 
pinning dislocation by precipitates [23]. In addition, 
Fig. 8(c) shows another lower magnification bright- 
field image in Fig. 8(a), which exhibits various 
morphologies of precipitates, such as spherical, 
rod-like and lamellar precipitates. The average size 
of these precipitates is 83.7 nm (Fig. 8(f)). It has 
been reported that fine precipitates not only hinder 
the dislocation movement to enhance the strength 
based on Orowan mechanism, but also relieve the 
stress concentration to maintain ductility [24,34,35]. 
Therefore, the synergistic effects of fine precipitates 

 

 
Fig. 8 Bright-field TEM image near 〈0001〉 of ER6.4 sample at strain of 6.8% under two-beam condition (a, b);  
Bright-field image to reflect distribution of precipitates (c); High-resolution TEM images of pinning dislocations by 
precipitates (d, e); Distribution of precipitates size (f) 
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and heterogeneous deformation of the ER6.4 
sample achieve a balance of precipitate strengthening 
and hardening as well as HDI strengthening and 
hardening, improving its strength and ductility 
simultaneously. 
 
4.2 Fracture behavior of dual-heterogeneous 

structure 
In order to evaluate the effect of banded 

precipitates on the mechanical properties, it is 
necessary to study the fracture mechanism of    
the ER3.9 sample, which is pursued via the 
investigation of tensile fracture. Figure 9(a) 
presents the SEM images on the ED−ND plane   
of the ER3.9 sample after fracture. It can be    
seen that the cracks initiate on banded Mg17Al12 
precipitates in fine-grained layers and are nearly 
perpendicular to the tensile direction near the 
fracture (Fig. 9(b)). Meanwhile, the propagation of 
cracks terminates in the coarse-grained layers, 

which indicates that the coarse-grained layers can 
effectively blunt propagating crack tips and 
constrain their growth (Fig. 9(c)). 

According to the observed results above, a 
descriptive model of tensile fracture in the 
dual-heterogeneous AZ91 alloy is proposed. The 
tensile fracture process of the ER3.9 sample can be 
illustrated by the following three stages shown in 
Fig. 9(e). At Stage I, the plastic deformation occurs 
preferentially in the coarse-grained layers when the 
tensile stress along the ED achieves the yield point 
of coarse grains. As the stress continues to increase 
and reaches the yield point of fine grains, the crack 
sources first appear on the banded precipitates in 
the fine-grained layers, while a few voids occur in 
the coarse-grained layers due to the coarse 
precipitates (Fig. 9(d)). At Stage II, the cracks grow 
from the banded precipitates, similar to the crack 
nucleation sites of the Mg−11Y−5Gd−2Zn−0.5Zr 
alloy [36]. As tensile stress further increases, the  

 

 
Fig. 9 SEM images on ED−ND plane near fracture (a−d); Schematic of tensile deformation and fracture mechanism of 
ER3.9 sample in uniaxial tension along ED (e) 
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cracks propagate almost perpendicular to the load 
axis, exhibiting transgranular and intergranular 
cracking, which is related to the local slip and twin 
behavior [37]. And also, the voids in the coarse- 
grained layers also induce stress concentration, 
resulting in their growth and extension along the 
tensile stress direction [38]. However, the coarse 
grains bridge and blunt the cracks, efficiently 
hampering the propagation of cracks. At Stage III, 
failure fracture occurs when the cracks link, and the 
coarse-grained layers can no longer maintain the 
applied load. Despite the fact that the coarse- 
grained layers limit the growth and propagation of 
cracks in the fine-grained layers, the presence of 
more crack sources accelerates the fracture of the 
sample. Therefore, the reduced banded precipitates 
in the ER6.4 sample exhibit a promising advantage 
in the ductile-phase toughening mechanism. 

The present work provides valuable insights 
into the design of a dual-heterogeneous structure 
that can effectively resist fracture while enhancing 
ductility. Utilizing this design method, the single 
materials with dual-heterogeneous structure can 
acquire unique combinations of strength and 
ductility. It has been suggested that the 
heterostructured materials with an appropriate 
proportion of hard and soft regions are capable of 
achieving the optimal HDI strengthening and 
hardening effect, which greatly affects their strength 
and ductility [10]. For instance, the fine-grained 
layers with high density precipitates in AZ91 alloy 
possessed an area proportion of 26.8%, which 
maximized HDI strengthening and hardening [26]. 
MA et al [39] found that the nanostructured 
Cu−10Zn layer, accounting for a volume fraction of 
22%, exhibited excellent combination of strength 
and ductility. Related researches also include pure 
Ti [6], and dual-phase steels [40]. Therefore, in 
order to optimize the mechanical properties, further 
work is warranted to consider two critical factors: 
(1) the area proportion and distribution of the 
coarse-grained layers and (2) the regulation of 
banded precipitates. 
 
5 Conclusions 
 

(1) The ER3.9 and ER6.4 samples present a 
dual-heterostructure of grain size and precipitates, 
especially the ER3.9 sample. However, a large 
number of banded precipitates are distributed in the 

fine-grained layers of the ER3.9 sample, in addition 
to fine-dispersed precipitates. 

(2) The ER6.4 sample presents an excellent 
combination of strength and ductility due to the 
synergistic effect of precipitate and HDI stress. The 
LUR tests indicate that the ER3.9 sample has the 
highest HDI stress, but the banded precipitates play 
a dominant role in deteriorating its ductility 
although the HDI hardening and high SF for basal 
slip contribute to the improvement of ductility. 

(3) The coarse-grained layers effectively limit 
the growth and propagation of cracks in the 
fine-grained layers and delay the failure fracture of 
the sample, exhibiting a ductile-phase toughening 
mechanism. 
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摘  要：研究晶粒尺寸和析出相的双重异质结构对小挤压比制备的 AZ91 挤压板材力学性能的影响。与挤压比(ER)

为12.8的样品(即ER12.8样品)相比，ER3.9和ER6.4样品呈现明显的粗细晶粒层和异质分布的细小弥散的析出相。

此外，在 ER3.9 样品的细晶层中还观察到大量带状析出相。由于异质变形诱导(HDI)力和析出相的平衡，ER6.4 样

品呈现良好的强度和塑性结合。尽管 ER3.9 样品表现出最高的 HDI 力和基面滑移施密特因子，改善了塑性，但更

多的带状析出相对恶化其力学性能仍起主导作用。 

关键词：AZ91 合金；双重异质结构；析出相；力学性能；异质变形诱导(HDI)力 
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