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Structure formation of Si-Y,03; co-deposition coatings on
Nb-silicide-based alloy

QI Tao, GUO Xi-ping
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Abstract: Si-Y,0; co-deposition coatings on an Nb-silicide-based ultrahigh temperature alloy were prepared by pack
cementation processes at 1 050, 1 150 and 1 250  for 5, 10, 15 and 20 h, respectively. The coating structure, phase
constituents and compositional distribution were investigated by SEM, EDS and XRD. Both the formation mechanism
and growth kinetics of coatings and the catalysis mechanism of Y,0; were discussed. The results show that all Si-Y,03
co-deposition coatings are composed of a (Nb, X)Si, (X represents Ti, Hf and Cr elements) outer layer and a (Nb, X);sSi3
transitional layer. Some thin discontinuous (Cr, Al),(Nb, Ti) Laves precipitates form between the substrate and (Nb,
X)sSi; transitional layer. The distribution of Y in the coatings is not uniform. The content of Y in (Nb, X)Si, and (Nb,
X)sSi3 phases is about 0.46%—0.57% (molar fraction) while that in (Cr, Al),(Nb, Ti) is about 0.94%. With increasing
co-deposition temperature, the content of Y increases obviously, while it increases slightly with the prolonging
co-deposition time. The addition of Y,0j; in the pack mixtures not only refines the microstructure of the coatings, but also
obviously catalyzes the coating growth.
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Table 1 Chemical composition of characteristic areas marked

in Figs.2(c) and Fig.5 determined by EDS mapping analyses

Molar fraction/%
Si Nb Ti Hf Cr Al Y
a 64.26 20.25 1077 1.54 199 0.62 0.57
b 39.55 30.50 2339 240 2.53 1.17 046
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