文章编号: 1004-0609(2009)09-1555-08

# 相场法模拟 AZ31 镁合金再结晶晶粒长大

王明涛,宗亚平,王 刚

(东北大学 材料与冶金学院 材料各向异性与织构教育部重点实验室, 沈阳 110004)

 摘 要:建立一个相场模型,并对 AZ31 镁合金进行再结晶晶粒长大模拟,提出一系列法则以确定模型中参数的 真实值,从而实现组织演化在工业应用范围内的真实时空模拟。在 300~400 ℃ 100 min 内时,模拟结果与实验结 果吻合得很好,在 250 ℃时,模拟结果与实验结果有较大偏离,说明该合金体系的界面迁移激活能在低温时有所 改变,定量模拟研究该合金组织的混晶程度。结果表明:合金在 300~400 ℃时,随时效时间的延长,混晶特别严 重。模型模拟相场法界面控制过程组织演变的真实时空,所确定的参数值也可以用于其他相似合金系统的模拟。
 关键词:AZ31 镁合金;相场法;再结晶;晶粒长大;计算机模拟
 中图分类号:TG 111.7 文献标识码:A

## Simulation of grain growth of AZ31Mg alloy during recrystallization by phase field model

WANG Ming-tao, ZONG Ya-ping, WANG Gang

(Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, School of Materials Science and Metallurgy, Northeastern University, Shenyang 110004, China)

**Abstract:** A model was established to simulate the realistic spatio-temporal microstructure evolution in recrystallization of Mg alloy using the phase field approach. The rules were proposed to decide the real physical values of all parameters in the model. The simulated results agree well with the reported experimental measurements at 300–400  $^{\circ}$ C in 100 min. However, there is an obvious deviation between the simulation and experimental results at 250  $^{\circ}$ C, which indicates a variation in interface mobility activation energy of the alloy system at the temperature. The grain size fluctuation in the microstructure was studied quantitatively. The results show that the grain size becomes more severe with increasing aging time at the temperatures of 300–400  $^{\circ}$ C. The model simulates the grain growth in real spatio-temporal scale for the first time and the parameter values can be regarded as a database for other similar alloy systems.

Key words: AZ31 Mg alloy; phase-field model; recrystallization; grain growth; computer simulation

随着计算机的普及与发展,研究人员提出了很多的模拟材料组织演化的模拟方法,相场法就是其中之一。相场法很适合在工业应用的尺度内进行材料组织的模拟,并在几十年的发展中显示出了其可以模拟组织真实时空演变的潜力。相场法已经成功地应用于很多组织演变过程,例如马氏体相变<sup>[1]</sup>、凝固过程<sup>[2-3]</sup>

以及第二相析出<sup>[4-6]</sup>等。同时,相场法可以加深人们对 不同类型组织性形貌形成的热力学及动力学机理的认 识。

尽管目前有关固态相变大部分相场法模拟是定性的研究,研究人员已经开始将其变成定量研究的工具。 ZHU等<sup>[7]</sup>采用计算相图的方法和数据库计算了局域自

基金项目:国家自然科学基金资助项目(50471024;50771028) 收稿日期:2008-03-06;修订日期:2009-06-08

化物口剂: 2003-03-00; 逻门口剂: 2003-00-08

通信作者: 宗亚平,教授,博士; 电话: 024-83681311; E-mail: ypzong@mail.neu.edu.cn

由能密度函数,使自由能表达实现真实值。最近 WEB 等<sup>[8]</sup>将相场模型应用到工程应用当中,用该法模拟某 一热处理过程,该过程为扩散控制的材料组织演变过 程,这是相场法首次用来在工业应用范围内模拟固态 组织的真实时空演变过程。

到目前为止,还没有在工业应用范围内对界面控 制过程进行真实时空模拟的相场法模型。合金的再结 晶过程是一个界面控制的过程,虽然曾有模拟元胞自 动法<sup>[9]</sup>和蒙特卡洛法<sup>[10]</sup>对再结晶过程模拟,然而只有 相场法具有物理分析的准确特征,本文作者则对该过 程利用相场法进行模拟,力图实现相场法对界面控制 过程固态显微组织演变的真实时空模拟,促进相场法 的实际应用,通过模拟得到的结果对理解晶粒长大的 机理和规律提供重要的学术参考意义,对准确控制材 料的晶粒尺寸与特性提供重要的参考价值。

### 1 模型建立

#### 1.1 模拟基本方程

相场法是基于热力学和动力学的一种模拟方法, 材料的微观组织随时间的演化可以通过分别解 Ginzburg-Landau 方程和 Cahn-Hilliard 扩散方程而得 到,

$$\frac{\partial \eta_q(r,t)}{\partial t} = -L \frac{\delta F}{\delta \eta_q(r,t)} \quad (q=1, 2, \dots, n) \tag{1}$$

$$\frac{\partial c(r,t)}{\partial t} = M \nabla^2 \frac{\delta F}{\delta c(r,t)}$$
(2)

式中: η<sub>p</sub>(r, t)是长程有序化参数; c(r, t)是成分场变量; L 和 M 分别是结弛豫和化学迁移率。F 是系统的自由 能项,各向同性的单相系统中该函数的一个合理表达 如下<sup>[11]</sup>

F(t) =

$$\int \left( f_0(c, \eta_1(r, t), \eta_2(r, t), \cdots, \eta_n(r, t)) + \frac{K_2}{2} \sum_{q=1}^n (\nabla \eta_q(r, t))^2 \right) dr$$
(3)

式中: f<sub>0</sub>是局域自由能密度函数; K<sub>2</sub>是梯度能系数。

本文作者以 AZ31 镁合金板材为例进行模拟并且 以文献[12]中的试验数据作为标准与模拟结果进行比 较。因此,合金成分为 w(Al)=3%、w(Zn)=1%,余量 为 Mg。再结晶温度为 250、300、 350 和 400 ℃,再 结晶时间直到 100 min。所有的组织图片和试验数据 如无特殊说明均来自文献[12]。

由于和三维空间相比晶粒长大二维空间的模拟结 果并没有太大差异<sup>[13]</sup>,同时为了增强计算效率,本文 作者在 512×512 个格子的二维空间进行模拟。为了能 与实际试验结果相比较,本模拟的总尺寸取 150 µm× 150 µm,即每个单元格的宽度为 2.93×10<sup>-7</sup> m。为了 使结果收敛,时间步长需要相对小些,但时间步长过 小则需要耗费更多的计算时间来形成要求的组织,综 合以上两方面因素本模拟取 0.3 s 作为时间步长。由于 模拟过程为界面控制扩散迁移率并不起主要作用,根 据文献[13],方程 2 中的扩散迁移率 *M* 近似取 3.87× 10<sup>-20</sup> m<sup>2</sup>·mol·J<sup>-1</sup>·s<sup>-1</sup>。

#### 1.2 局域自由能密度函数的建立

本模型考虑了再结晶前后的储存能并将其添加到 局域自由能密度函数中,局域自由能密度函数建议表 达如下:

$$f_{0} = A + \frac{A_{1}}{2} [c(r,t) - c_{l}]^{2} + \frac{A_{2}}{4} [c(r,t) - c_{l}]^{4} - \frac{B_{1}}{2} [c(r,t) - c_{l}]^{2} \sum_{q=1}^{n} \eta_{q}^{2}(r,t) + \frac{B_{2}}{4} \sum_{q=1}^{n} \eta_{q}^{4}(r,t) + \frac{K_{1}}{2} \sum_{q=1}^{n} \sum_{p\neq q}^{n} [\eta_{q}^{2}(r,t)\eta_{p}^{2}(r,t)]$$

$$(4)$$

式中: c 是合金成分;  $c_l$ 是一定温度下自由能成分曲线 的最低点的成分,其值在需要模拟的 4 个温度下分别 为 0.17、0.2、0.2 和 0.2(见图 1(a)) 。n 是系统中可能 的晶粒取向个数,根据文献[11]该值取 32。为了满足  $f_0 在 \eta_1$ 处的最小值,式(4)对  $\eta$  的导数应该为 0,于是 得到

$$B_1(c-c_l)^2 = B_2 \tag{5}$$

在式(4)中,当
$$\eta_p^2 = 1 且 \sum_{q \neq p}^n \eta_q^2 = 0$$
时, $f_0$ 代表再结

晶后基体的自由能; 当  $\sum_{q=1}^{n} \eta_q^2 = 0$  时,  $f_0$  则代表再结晶 前冷加工形变基体的自由能。于是再结晶过程中释放 的储存能 *E* 可以按如下方法求出,

$$E = f_0 \left(\sum_{q=1}^n \eta_q^2 = 0\right) - f_0 \left(\eta_p^2 = 1, \sum_{q \neq p}^n \eta_q^2 = 0\right) = \frac{B_1}{2} (c - c_l)^2 - \frac{B_2}{4}$$
(6)

储存能是再结晶过程的驱动力,以缺陷(例如位错) 的形式存在于材料中并且在再结晶过程中释放<sup>[15]</sup>。根 将 E=12.8 J/mol 代入到式(5)和(6)中,可以得到  $B_1 和 B_2$ ,由于本模型假设储存能是与再结晶温度无关 的常数,于是  $B_1 和 B_2$ 也是独立于温度的参数。计算 结果见表 1。



图 1 AZ31 镁合金在 250, 300, 350 和 400 ℃的自由能曲线 Fig.1 Free energy curves of AZ31 Mg alloy at 250, 300, 350 and 400 ℃: (a) By software Thermocalc; (b) By fitting Fig.1(a) and Eq.(4)

在 Mg-Al-Zn 合金系统中,不同温度下的自由能成分 曲线(见图 1(a))可以通过软件 Thermocalc 获得,于是 参数  $A \ (A_1)$  和  $A_2$  可以通过拟合式(4)

$$f_0(\eta_p^2 = 1, \sum_{q \neq p}^{Q} \eta_q^2 = 0)$$
与实际自由能成分曲线得到, 拟

合后的曲线如图 1(b)所示,最佳拟合结果见表 1。

#### 1.3 模拟组织的晶界特征

为了实现真实时空模拟,本文作者通过研究晶界特征,即晶界宽度和界面能,来确定式(3)和(4)中的参数 *K*<sub>1</sub>和 *K*<sub>2</sub>,本模型以双晶平直界面作为研究对象。

通过现有的方程,仅能够知道 K1和 K2在晶界处 的作用,却无法直接推导出与晶界特征的关系,于是 本文作者采用在一定范围内对 K1 和 K2 任意赋值,通 过比较模拟结果来确定梯度系数与晶界特征的关系, 从而确定系数 $K_1$ 和 $K_2$ 的真实取值。根据计算发现 $K_1$ 和 K2 不同的取值所得到的组织中晶界处成分场和取 向场变量的变化趋势是一致的,当 $K_1$ =4.0×10<sup>2</sup> J/mol,  $K_2=3.5 \times 10^{-12} \text{ m}^2 \cdot \text{J/mol}$ 时,晶界处取向场变量的变化 如图 2(a)所示,即在晶界处取向场变量介于 0 与 1 之 间。同时,在本研究中的晶界并不是传统意义上的原 子排列不规则的晶格畸变区, 而是能量有异于基体的 区域,本文作者称之为晶界作用域,如图 2 中 r 所代 表的宽度(例如有些小角度晶界的位错应变区为1000 个原子宽度)。从实际的合金显微组织(见图 4)也可看 出,其晶界宽度远大于原子排列不规则的晶格畸变区 的宽度, 原因即为通过腐蚀使能量不同于基体的区域 显现出来形成了如前所述的晶界作用域。图 2(b)所示 为根据图 2(a)与方程 4 确定的 η 与成分关系做出的晶 界处成分变化曲线。由图 2(b)可以看出,随温度的降 低,晶界处的偏析程度增加,这与已有的理论一致。

在本模型中,本文作者通过晶界作用域的宽度和 晶界能这两个晶界特征来限制  $K_1$ 和  $K_2$ 的取值,本模 拟首先在  $K_1 \in [1.80 \times 10^2 \text{ J/mol}, 12.8 \times 10^2 \text{ J/mol}]$ 且增 量为  $1.1 \times 10^2 \text{ J/mol}$ 时,  $K_2$ 分别取 1.55、3.55、4.55、

表 1 式(4)中参数  $A, A_1, A_2, B_1$  和  $B_2$  在各模拟温度下的取值 **Table 1** Calculated parameters  $A, A_1, A_2, B_1$  and  $B_2$  in Eq.(4) at different temperatures

| Temperature/°C | $A/(kJ \cdot mol^{-1})$ | $A_1/(\text{kJ}\cdot\text{mol}^{-1})$ | $A_2/(\text{kJ}\cdot\text{mol}^{-1})$ | $B_1/(kJ \cdot mol^{-1})$ | $B_2/(kJ \cdot mol^{-1})$ |  |
|----------------|-------------------------|---------------------------------------|---------------------------------------|---------------------------|---------------------------|--|
| 250            | -19.7                   | 22.1                                  | 5.2                                   | 2.65                      | 51.2                      |  |
| 300            | -22.1                   | 21.1                                  | 13.0                                  | 1.79                      | 51.2                      |  |
| 350            | -25.0                   | 20.6                                  | 18.3                                  | 1.79                      | 51.2                      |  |
| 400            | -27.5                   | 16.8                                  | 31.5                                  | 1.79                      | 51.2                      |  |



图 2 有序化参数及成份在晶界处的变化

**Fig.2** Variation of orientation parameters and composition in grain boundary (p is grain boundary position; r is range of grain boundary): (a) Variation of orientation parameters at grain boundary; (b) Variation of composition at grain boundary at different temperatures

5.55、6.55、7.55×10<sup>-12</sup> m<sup>2</sup>·J/mol 时进行组织模拟,并 对模拟结果的晶界作用域宽度进行计算,发现不同  $K_1$ 条件下, $K_2$ 相同,晶界作用域宽度也相同,其值分别 为: 0.879、1.172、1.465、1.758、2.051、2.344  $\mu$ m。 这说明在以上  $K_1$ 和  $K_2$ 的取值范围内晶界作用域的宽 度主要由  $K_2$ 决定。对于模拟组织晶界能的计算参考文 献[13],计算结果如图 3 所示。

根据实验所得金相照片(见图 4), 其上晶界作用域 约为 1~2  $\mu$ m, 于是本研究中取  $K_2$ =3.55×10<sup>-12</sup> m<sup>2</sup>·J/mol 以保证模拟结果的晶界作用域宽度为 1.172  $\mu$ m(4 个格 子)即与实际宽度相符合。

*K*<sub>1</sub>和*K*<sub>2</sub>均对晶界能有影响,且随*K*<sub>1</sub>和*K*<sub>2</sub>的增大, 模拟组织的晶界能增大。同时,镁合金再结晶后的界 面为任意大角度界面,在大部分单相系统中理论值为 0.5~0.6 J/m<sup>2[17]</sup>,本模型中则取 0.55 J/m<sup>2</sup>。由于*K*<sub>2</sub>可



图 3 系数 K1 和 K2 与晶界能的关系

Fig.3 Relationship between gradient parameters and grain boundary energy

根据晶界作用域宽度确定,于是按照晶界能值从图 3 中 *K*<sub>1</sub> 可以唯一确定为 4.0×10<sup>2</sup> J/mol。

#### 1.4 模型中界面迁移率的表达及取值

在方程1中L是和界面迁移率有关的参数,且和 温度的关系符合阿伦尼乌斯公式的形式<sup>[10]</sup>

$$L = L_0 \exp\left(-\frac{Q}{RT}\right) \tag{7}$$

式中: *L*<sub>0</sub>是常数; *R* 是摩尔气体常数; *Q* 是激活能。 到目前为止,在再结晶和晶粒长大过程中 *Q* 的物理意 义和真实取值并不是十分清楚,很多理论都认为第二 相粒子或偏析原子对晶界移动的拖拽是该过程的主要 影响因素<sup>[15]</sup>,然而本模型模拟的是单相合金,没有第 二相析出,故本研究建议采用外加元素的偏析激活能 作为 *Q*。

偏析激活能 V可以通过公式  $V = 8\pi r^3 G \delta^2$  计算<sup>[18]</sup>, 其中 r 是基体原子半径; G 是剪切模量;  $\delta = \left| \frac{r - r_F}{r} \right|$ ,  $r_F$ 则取与基体原子半径相差较大的主要溶质原子。本 研究中  $r_F = r_{Zn}$ ,  $r = 1.59 \times 10^{-10}$  m,  $r_{Zn} = 1.33 \times 10^{-10}$  m<sup>[18]</sup>, G = 17 GPa, 可得  $E = 4.49 \times 10^{-20}$  J/atom, 相当于 Q = 27.6kJ/mol。

 $L_0$ 无法直接从理论上推导出,本研究则通过 400 ℃ 时实验所得的晶粒尺寸时间曲线与模拟曲线拟合得到  $L_0$ ,当 $L=2.37\times10^{-7}$  m<sup>3</sup>/(s·J)时,模拟结果与实验结果 具有最优拟合,此时根据式(7), $L_0 = 3.29\times10^{-5}$ m<sup>3</sup>/(s·J),从而其他温度下的L值可以通过式(7)得到。 第19卷第9期

#### 1559

#### 1.5 模型初始条件的设置

再结晶的形核是一个复杂的过程在当前水平还无 法进行真实时空的模拟<sup>[15]</sup>,因此在本模型中通过唯象 的方法处理形核过程,即在整个模拟区域内以 8dx× 8dx(其中 dx 表示模拟网格的宽度)作为基本单元,每 个单元内形成一个晶核,其半径为 0~4dx 之间的随机 值。同时引入一个持续 1 min 的快速长大阶段来模拟 形核,该阶段的迁移率 L'假设为 L'=100L。同时初始 成分根据初始值的确定,在新基体内(η=1)成分为合金 平均成分 0.03,在其余位置则取为 0.031 以形成成分 偏析。

### 2 结果与讨论

本研究模型的建立对再结晶过程是储能与界面曲 率同时推动晶粒长大的过程,即可以认为是再结晶与 晶粒长大过程同时发生,这其实更符合实际的再结晶 过程<sup>[15]</sup>。也就是再结晶的进行是储存能和界面能同时 起作用无法分开,通过式(3)和(4)可知,当η在0~1之 间的时候,局域自由能密度和梯度项均不为零,即对 组织演变均起作用。

本模型得到的是真实时空的显微组织,因此可以 与实验结果的形貌进行直接比较。模拟组织与实验组 织图如图 4 所示,比较相同处理条件下的实验与模拟 组织图可以看出,组织形貌在相对应的时效温度和时 间内吻合得很好,这证明了该模型的有效性。因此说 明再结晶过程界面能同样起十分重要的作用,这点正 是材料开发实验研究者通常忽略的问题方面,本模拟 的这个结果应该给予关注。

观察同一温度下组织演化过程可以发现(见图 4), 尺寸大于周围晶粒尺寸的晶粒会继续长大,尺寸小于 周围晶粒尺寸的晶粒会逐渐变小直至消失,于是随时 间增加,模拟区域内的晶粒会越来越少,平均晶粒尺 寸则越来越大,这与普通理论分析的结果是相符的。 从图中还可以发现四边形、五边形晶粒,即有可能边



图 4 模拟与实际组织图的比较

**Fig.4** Comparison of simulation and experimental photographs: (a) 250 °C, 30 min, simulation; (b) 250 °C, 90 min, simulation; (c) 250 °C, 30 min, experimental; (d) 400 °C, 30 min, simulation; (e) 400 °C, 30 min, experimental; (f) 400 °C, 90 min, simulation

数逐渐减少至三边形后消失,并形成一个稳定的三叉 节点;也有可能直接消失,并分别形成不稳定的四叉 和五叉晶界节点,节点又随后分解为两个和3个稳定 的三叉节点,这与己有的实验观察结果完全一致<sup>[19]</sup>, 这里通过模拟提供了再结晶晶粒长大的演变机理。同 时由图 4(a)和(b)可知,低温时(250℃),该合金晶粒细 小,分布较为均匀,且随着时间的延长,尺寸略有增 大;而高温时(400℃),晶粒粗大,且随时效时间增加, 尺寸增加明显。为了定量研究晶粒尺寸,进一步检验 模型的正确性,本研究统计了各温度下晶粒的平均尺 寸随时间的变化,并与试验结果进行了对照,结果如 图 5 所示。



**图 5** 晶粒尺寸随保温时间变化时模拟结果与实验结果的 对比

**Fig.5** Comparison of simulation and experimental results of mean grain size evolution with aging time

图 5 所示为晶粒尺寸随时间变化的实验与模拟结 果的比较。从图 5 可看出,4 个五角星图标表示 400 ℃ 时的实验结果,该数据用来标定本模型中式(7)中的 L<sub>0</sub>,所以在该温度下实验与模拟值吻合得很好,同时 可以看到在 350 和 300 ℃时,仍然吻合的很好,这表 示当前模型可以很好的模拟再结晶过程,说明在这两 个温度下利用式(7)得到的界面迁移率的正确性,特别 是有关式(7)中激活能的假设可以认为是正确的,同时 说明 Zn 原子在界面偏析对界面迁移的能动性起主要 作用,而Al在体系中所占比例虽然较大但对界面能动 性所起作用不大,这个结果对材料设计和优化具有重 要参考意义。然而,在250℃时,实验与模拟结果有 较大差别,这显然是在低温下激活能机理的发生了改 变; 250 和 300 ℃时,实验值与模拟值基本重合,说 明 300 ℃以下的界面迁移率基本相等, 这表明 300 ℃ 以下热处理不产生合金元素的界面偏析。进一步观察 图 5 中模拟曲线发现,随温度升高曲线斜率增加,表 示平均晶粒尺寸长大速度加快,说明较高温度会促进 晶界移动速度,符合 1.4 节提出的温度与界面迁移率 的关系。

目前,对于再结晶形核的机理主要认为是两侧错 密度不同的界面突然移动,其移动后扫过的区域既是 新晶粒的形核区域,这就决定了形核过程的速度很快, 时间很短的特点。图 5 中模拟曲线即使在再结晶开始 阶段与多数实验结果符合很好,说明本模型的形核阶 段设定为 1 min 的假设是合理的,符合再结晶过程中 形核时间很短,储存能释放非常迅速的特点。再结晶 晶粒长大阶段的模拟中,本模型同时也是基于界面能 项驱动晶粒长大原理的,而长大阶段的模拟与实验结 果对应也很好,说明该合金的再结晶过程经过很短时 间后是储存能与界面能共同作用的结果,其中储存能 主要通过组织中空位、位错等缺陷数量的进一步减少 进行释放,从而促进组织演化。体系界面能量则通过 平均晶粒尺寸的增加来减少体系中界面的面积进行降 低,从而影响组织的演化过程。

由图 4 还可以看出,高温时模拟再结晶组织混晶 现象很严重,这与以往的晶粒长大模拟结果不同<sup>[9-11]</sup>, 这可能是 AZ31 镁合金再结晶的一个重要特性,于是 本研究对模拟结果的混晶现象进行了定量研究。由于 以往的研究中没有有关混晶程度的定量表示方法,本 研究提出一个描述材料组织混晶程度的参量即混晶 度,用Δd 表示。其具体计算方法为:Δd=d<sub>max</sub>-d<sub>min</sub>, 其中 d<sub>max</sub>是 5%最大晶粒尺寸的平均值;而 d<sub>min</sub>是 5% 最小晶粒尺寸的平均值。

各再结晶温度下混晶度随时间变化的模拟结果和 部分实测数据如图 6 所示。由图 6 可以看出,随着再



图 6 混晶度的模拟与实验结果对比

Fig.6 Comparison of simulation and experimental results of grain size

结晶温度的提高,相同的条件下再结晶的晶粒混晶度 显著增加,尤其在 300~350 ℃时,受温度影响最为显 著,同时也可以看出在低温时混晶度随时间的变化很 平稳,而在高温时混晶度的变化变得不稳定。这有可 能是随着温度的增加,储存能进一步释放,相对而言 界面能对组织演化起着更重要的作用,且温度越高, 晶粒形状越不规则,导致混晶度在高温时的不稳定变 化。比较图 4(b)与(c),(d)与(e)以及图 6 的模拟结果与 实验结果,可以发现模拟结果与部分有限的实验数据 吻合得很好,这种出现显著混晶的现象应该与 AZ31 镁合金自由能与成分变化曲线的特点有关。

综上所述,本研究从合金组织形貌、晶粒尺寸以 及混晶度等几个方面对模拟以及试验结果进行比较, 均吻合较好,这种一致性说明该模型的有效性以及准 确性。同时本模型的成功不仅在于其能够模拟 AZ31 镁合金,更重要的是提出了一系列法则来确定模型中 参数的物理意义以及实际取值,从而完成了材料组织 真实时空的模拟。只要给出动力学和热力学数据,例 如偏析激活能和自由能成分曲线等,本模型以及法则 可很容易移植到其他合金系统中,而本模拟得出的参 数值也可以直接用于类似的合金系统。通过本模拟不 仅可以提供该合金控制工艺的参考数据,更重要的是 确定微观组织演化的机制,从而加深对合金物理过程 和合金特性的理解。

### 3 结论

 建立了一个可以在工业应用范围内模拟真实 时空再结晶组织演化的模型。

2) 模拟结果与在 300~400 ℃退火 100 min 内的实验结果吻合得很好,在 250 ℃的时候有较大差别,说明在该温度下 AZ31Mg 合金界面迁移激活能的机制发生了变化。

3) AZ31Mg 合金再结晶组织的混晶度随温度的升 高而增大,且在同一温度下,混晶度随时效时间的增 加而增加。

4) AZ31Mg 合金在 300~400 ℃进行时效时,随时 效时间的延长出现严重混晶现象,这一模拟结果与已 有的几个实验数据符合。

#### REFERENCES

[1] ARTEMEV A, JIN Y, KHACHATURYAN A G. Three-

dimensional phase field model of proper martensitic transformation[J]. Acta Materialia, 2001, 49(7): 1165–1177.

- [2] 龙文元,蔡启舟,魏伯康,陈立亮.二元合金非等温凝固过程的相场法模拟[J].特种铸造及有色合金,2005,25(2):88-91.
   LONG Wen-yuan, CAI Qi-zhou, WEI Bo-kang, CHEN Li-liang.
   Phase-field simulation of non-isothermal solidification of binary alloy[J]. Special Casting and Nonferrous Alloys, 2005, 25(2): 88-91.
- [3] 路 阳, 王 帆, 朱昌盛, 王智平. 等温凝固多晶粒生长相场 法模拟[J]. 物理学报, 2006, 55(2): 780-785.
   LU Yang, WANG Fan, ZHU Chang-ping, WANG Zhi-ping. Simulation of multiple grains for isothermal solidification of binary alloy using phase-field model[J]. Acta Physica Sinica, 2006, 55(2): 780-785.
- [4] 郭 巍, 宗亚平, 左 良, 王云志. 外加应变对 Ti-25Al-10Nb 合金显微组织影响的相场法模拟[J]. 金属学报, 2006, 42(5): 549-533.
  GUO Wei, ZONG Ya-ping, ZUO Liang, WANG Yun-zhi. Simulation of effect of applied strain on the microstructure of Ti-25Al-10Nb alloy by phase field method[J]. Acta Metallurgica
- [5] GUO Wei, ZONG Ya-ping, WANG Gang, ZUO Liang. Applied strain field on microstructure optimization of Ti-Al-Nb alloy computer simulated by phase field approach[J]. Journal of Materials Science and Technology, 2004, 20(2): 245–248.

Sinica, 2006, 42(5): 549-533.

- [6] 陈大钦,郑子樵,李世晨,刘祖耀,李 剑,周 明,陈志国. 共格沉淀析出过程的模拟—微观结构演化[J].中国有色金属 学报,2005,15(12):1945-1952.
  CHEN Da-qin, ZHENG Zi-qiao, LI Shi-chang, LIU Zu-yao, LI Jian, ZHOU Ming, CHEN Zhi-guo. Simulation of precipitation process of coherent particles—Microstructure evolution[J]. The Chinese Journal of Nonferrous Metals, 2005, 15(12): 1945-1952.
- [7] ZHU J Z, LIU Z K, VAITHYANATHAN V, CHEN L Q. Linking phase-field model to CALPHAD: Application to precipitate shape evolution in Ni-base alloys[J]. Scripta Materialia, 2002, 46(5): 401–406.
- [8] WEN Y H, WANG B, SIMMONS J P, WANG Y. A phase-field model for heat treatment applications in Ni-based alloys[J]. Acta Materialia, 2006, 54(8): 2087–2099.
- [9] MARX V, REHER F R, GOTTSTEIN G. Simulation of primary recrystallization using a modified three-dimensional cellular automaton[J]. Acta Materialia, 1999, 47(4): 1219–1230.
- [10] RADHAKRSHNAN B, SARMA G B, ZACHARIA T. Modeling the kinetics and microstructural evolution during static recrystallization—Monte Carlo simulation of recrystallization[J]. Acta Materialia, 1998, 46(12): 4415–4433.
- [11] FAN D N, CHEN L Q. Computer simulation of grain growth using a continuum field model[J]. Acta Materialia, 1997, 45(2):

611-622.

[12] 刘饶川, 汪凌云, 辜蕾钢, 黄光胜. AZ31B 镁合金板材退火 工艺及晶粒尺寸模型的研究[J]. 轻合金加工技术, 2004, 32(2): 22-25.

LIU Rao-chuan, WANG Ling-yun, GU Lei-gang, HUANG Guang-sheng. Study on annealing technique for wrought magnesium alloy plate and modeling research on the changing law of its grain size[J]. Forming Technology of Light Metals, 2004, 32(2): 22–25.

- [13] KRILL III C E, CHEN L Q. Computer simulation of 3-D grain growth using a phase-field model[J]. Acta Materialia, 2002, 50(12): 3057–3075.
- [14] MOREAU G, CORNET J A, CALAIS D. Acceleration of the chemical diffusion under irradiation in the system aluminiummagnesium[J]. Journal of Nuclear Materials, 1971, 38(2): 197–202.
- [15] DOHERTY R D, HUGHES D A, HUMPHREYS F J, JONAS J J, JUUL J D, KASSNER M E, KING W E, MCNELLEY T R, MCQUEEN H J, ROLLETT A D. Current issues in

recrystallization: A review[J]. Mater Sci Eng A, 1997, 238(2): 219–274.

- [16] VERDIER M, GROMA I, FLANDIN L, LENDVAI J, BRKHET Y, GUYOT P. Dislocation densities and stored energy after cold rolling of Al-Mg alloys: Investigations by resistivity and differential scanning calorimetry[J]. Scripta Materialia, 1997, 37(4): 449–454.
- [17] GJOSTEIN N A, RHINES F N. Absolute interfacial energies of [001] tilt and twist grain boundaries in copper[J]. Acta Metallurgica, 1959, 7 (5): 319–330.
- [18] LÜCKE K, DETERT K. A quantitative theory of grain-boundary motion and recrystallization in metals in the presence of impurities[J]. Acta Metallurgica, 1957, 5(11): 628–637.
- [19] PALMER M, RAJAN K, GLICKSMAN M, FRADKOV V, NORDBERG J. Two-dimensional grain growth in rapidly solidified succinonitrile films[J]. Metall Mater Trans A, 1995, 20: 1061–1066.

(编辑 李艳红)