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Table 1 Corresponding strains of different
samples at €= 0. 117 s~ !

Sample No. €
1-1 0.20
1-2 0.30
1-3 0.40
1-4 0.50

F2 MEEARE e= 0.35 N AR b ) AR E %
Table 2 Corresponding strain rates of different
samples at €= 0. 35

Sample No. s !
271 0.05
2=2 0.10
2-3 0.15
2-4 0.20
2°5 0.25
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Fig. 1 Microstructures of samples at constant strain rate
(a) —Sample 1 =1, €& 0.2; (b) —Sample 1 =2, & 0.3; (c¢) —Sample 173, €= 0.4 (d) —Sample 1 =4, & 0.5
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Fig.2 Stress strain curves of samples
at constant strain rate
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Fig.3 Microstructures of samples at different strain rates

(a) —Sample 2~ 1, &= 0.05; (b) —Sample 2~2, & 0. 10;
(¢) —Sample 2~ 3, &= 0.15; (d) —Sample 2~ 4, &= 0.20; (e) —Sample 2~ 5, &= 0.25



* 906 ° o EAT 4R A

TR . — B SRR INA R, BUR LS
FEA L

R 2-5(8= 0.25 s YIS ERES 2 -4 2%
oL, GLETE g 350, AH R B 0 HE A T 24 L
L, FEAN 275 MBS EROREORT BL Ay S B A IR —
POERLARZI R 25 Bm FIRLINBRTE; 55— R &SR
oA 30 Mm [ TEARAS R U] () 4% i BRLIBG 488 £ — 2 R A
AR, AR T UE G I BT — U AR K
[EIRFAE, 7T B A B R R RE e, K Bt it R R
ERACHFAE RIREAR B 2, )2 [ 25 T A 4 b e
fl .

PRI, YRRV E 45 T I AL 2R T8 o0 N AR T 26
TR |

FERM IR ) — A ik an 18 4 FHIE 5 o . A
fh2-1(e=0.05s AL 1 -4 ML, ZBHN
TR, T E N A KRR B RS T AR
i 27 1 AR TR /N, R i B [ A I I 1), L
fi%, BLATEHTIK .

120 Sample 1-4

100t Sample 2-1

807

o/MPa

60 1
40t
20¢

0 0.1 0.2 0.3 0.4 0.5
13
4 FES 1421 (RSN 1 — N A8 LR

Fig.4 Siress strain curves of samples

174 and 271

FRAfEsh 2= 1 BLAh, FEM 2 -2~ 25 IR TESL
FIERAR/N, UBA R A C 2 TR AR 1 T FRTR & X K
BEE LR, B SEESELETREEH . W
I, BEE 272~ 275 B4 SR 2 AR TEAE B T vk ] ]
WIRAXHZ R . MAS R &= 0. 10 s~ 2 ht [l 5
A5 T RLFE T 46 e A2 R A A I s

3 itig

5 A A ot AL P 2 5 ] 4 B 8 P 22 T
{E . AENARRE S, N B 0.05 s ', A&
TEBATAE T T 54 B B0 8 B 5 R, i ) 7 R
i, T B TR K, B [ 5 AR AR R )

2003 4 8 H
40 (@) Sample 2-2
30+
o)
&
S 207
5
10]
0 0.1 0.2 0.3 0.4
€
207 (b) Sample 2-4

o/MPa

0 0.1 0.2 0.3 0.4
&

5 ANIE] DY AR AR R RN ) — DV AR it
Fig. 5 Stress strain curves of samples

at different strain rates

(a) —Samples 2~ 2 and 2 ~ 3;
(b) —Samples 2 "4 and 2~5
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Deformation behavior of aluminum alloy under strong cooling

LIU Yong, LIN Ying-hong, ZHOU Ke- chao
(State Key Laboratory for Powder Metallurgy,
Central South University, Changsha 410083, China)

Abstract: The deformation behavior and microstructure of Al alloy under strong cooling were investigated through thermal simulation. The re-
sults show that the microstructure of Al alloy solidified under strong cooling is mainly composed of dendrite structure. At a constant strain rate
of & 0.117 s™ ', no coupling process involving solidification and deformation occurs, and the microstructure belongs to deformed dendrite
structure after solidification. The morphology of the dendrite structure is strongly sensitive to the strain rate. The coupling process of solidifica-
tion and deformation occurs at a critical point when €= 0.10 s~ . Above this point, the dendrite structure bends and fractures when solidify-
ing. With the strain rate increasing, the alloy microstructure transforms from closely-packed and well organized dendrites to disintegrated and
spheroidized dendrites. The larger the strain rate, the lower the deformation stress, and the finer the microstructure.

Key words: aluminum alloy; rolF casting; microstructure; deformation behavior
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