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Fig. 2 Microstructures of Fe-34. 7% Sn
hypermonotectic alloy

(a) —Two separate phase structure
(D= 0.85mm, AT< 84K);
(b) —Ostwald wrought structure
(D= 0.56 mm, AT< 123 K);

(¢) —Complete coupled growth structure
(D= 0.29 mm, AT> 123 K)
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Fig. 4 Spinodal congregating of Sirrich

liquid phase in hypermonotectic alloys
(a) —Morphology;

(b) —Schematic representation of concentration

distribution of Sn
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Fig. 3 Microstructures of Fe-26. 2% Sn e .g '

hypomontectic alloy
(a) —Coupled growth structure

(D= 0.71 mm, AT> 155K);
(b) —Monotectic structure( D= 0. 16 mm)
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Fig. 6 Morphologies formed in growth way of

stable planar interface at deep undercooling in
Fe26. 2% Sn hypomonotectic alloy
(D= 162 bm, AT= 588 K)
(a) —Low magnification morphology;
(b) —High magnification morphology
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Fig. 7 Real distributive coefficient, kv, at

interface of liquid and solid vs undercooling
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Fig. 8 Ciritical undercooling of absolute stable

planar interface growth vs growth rate in
Fe-26. 2% Sn hypermonotectic alloy
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Table 1 Physical properties of Fe-26. 2% Sn alloy
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Table 2 Physical properties of Fe-26. 2% Sn hypomonotectic alloy
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Fig. 9 Cooling curve of Fe-26. 2% Sn

hypomonotectic alloy
(D= 162 bm)
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Rapid solidification microstructures of Fe-Sn
monotectic alloys at deep undercooling

ZHU Ding-yi', YANG Xiao-hua', HAN Xirjun®, WEI Bingbo’
(1. School of Materials Science and Engineering, Fuzhou University, Fuzhou 350002, China;
(2. Department of Applied Physics, Northwestern Polytechnical University , Xi an 710072, China)

Abstract: The rapid solidification microstructures of Fe-Sn alloys at deep undercooling were studied by using 3 m drop tube facility. The re-

sults show that the disperse microstructures of coupled growth of two phases are obtained in hypomonotectic, monotectic and hypermonotectic al-

loys under deep undercooling condition. It indicates that there is a monotectic coupled growth zone in monotectic phase diagram at deep under

cooling condition, which is similar to that in eutectic phase diagram. Srrrich liquid phase forms and grows firstly in hypermonotectic alloy,

which grows in way of spinodal. The Fe solution forms firstly in hypomonotectic alloys, which grows in way of nucleation and growth. The abso-

lute stable monophase microstructure with planar interface was obtained at first time in Fe-26. 2% Sn hypomonotectic alloy with the real distribu-
P! P yp y

tive coefficient of solute, kv, is close to 1. It is calculated that the critical undercooling of the alloy in growth way of absolute stable planar in-

terface is 588K and its growth velocity is 38m/s. The critical undercooling is 0. 4 times of the melt temperature of the alloy.

Key words: monotectic alloy; deep undercooling; drop tube; coupled growth structure; planar interface growth
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