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Fig.5 Shear characteristic at Y plane after
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Fig. 6 Shear model of first extrusion
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Equal channel angular pressing process ( ECAP) of pure Al( [ )

—microstructure evolution

LIU Yong, TANG Zhrhong, ZHOU Ke chao, LI Zhryou
(State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083, China)

Abstract: The microstructure evolution of pure aluminum in different equal channel angular pressing (ECAP) routes was investigat-

ed. The results show that the microstructure of pure Al highly depends on the routes of ECAP. In order to analyze the shearing plane

and shearing direction of the three routes, and to extrapolate the microstructure evolution during these routes, a cubic unit-based tor

sion model was suggested. In route C, every shear deformation happens on the same shearing plane, but the shearing direction revers-

es in two preceded steps, and excessive deformation remains after one shear deformation is counteracted by the subsequent shear defor

mation. In route A, there are two shearing planes intersecting by 60°. In route B, there are four different shearing directions, alter-

nating on four different shearing planes, so all of the crystals on X, Y and Z planes are deformed, leading to the formation of e

quiaxed structure.

Key words: equal channel angular pressing; pure aluminum; microstructure
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