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Table 1 Main constituents and structural parameters of graphite samples

Constituent ( mass fraction, %)

Structural parameter

Sample
Fe Si Ca Mg d o2/ nm L(a)/nm L(c¢)/nm Graphitic degree/ %
(077 0.001 0.25 0. 002 0.002 0. 021 0.336 41 27.042 17. 166 88.4
JD T race 0.01 Trace Trace 0. 001 0.334 84 50.310 28.222 98.7
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Fig. 1 XRD patterns of JD in different

charge discharge states
(a) —Before cycling; (b) —After 1 st discharge;

(c¢) —After 1 st cycling; (d) —After 3rd discharge;
(e) —After 3 rd cycling
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Table 2 Structural parameters of graphite

samples before and after intercalated Li

Before intercalation After intercalation

Structural of lithium ion of lithium ion to 0 V
parameter
CZ JD CZ JD
d 002/ nm 0.336 4 0.334 8 0.364 5 0.369 2
L(c)/nm 17. 166 28.222 19. 326 32.179
20/ (°) 26.53 26.48 24. 42 24.65
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Table 3 Changes of d 2 value of sample JD
at different potential of

Li" intercalation/ deintercalation in Ist cycle

d()()z/ nm

®(vs Li/Li*)/V

1st intercalation 1st deintercalation

2.8 0. 3350

0.15 0.344 6 0. 3452

0.07 0.350 7 0.3511
0 0.369 2
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Fig.2 XRD result of sample CZ after 1st discharge
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Table 4 First 3 cycles specific capacity and efficiency of graphite carbon anode
samples at different current density
Ist eycle 2nd cycle 3rd cyde
. Current .

T b mabeg ) V* (mabe ) (mang ) Y (mabg ) (mabgh V%
15 413 314 76 325 310 95 324 304 94

30 386 270 70 268 252 94 264 248 94

60 192 125 65 111 103 93 112 105 94

75 160 96 60 87 82 94 82 78 95

D —Discharge (intercalation Li" ) capacity; C —Charge ( deintercalation Li* ) capacity; 1——Cycle efficiency
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Fig. 6 Effect of different current densities on

Li* deintercalation capacity of graphite sample JD
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Fig.7 SEM images of SEI films on graphite

electrode surface during 1st discharge to 0 V

(vs Li/Li" ) at different current density
(a) =15 mA/g; (b) —60 mA/g
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Li* intercalation/ deintercalation process in natural graphite

LIU Yexiang, ZHOU Xiang-yang, LI Jie, HU Guo-rong
(School of Metallurgy Science and Engineering, Central South U niversity,
Changsha 410083, China)

[ Abstract] The intercalation/ deintercalation of Li* in natural graphite and the effect of current density on the intercalation of Li*

in graphite are studied. Ex-situ XRD results show that the distance between graphite layer expands and almost shrinks to it’ s original
grap grap Y p g

state during intercalation/ deintercalation of Li" process. SEM results reveal that the SEI film of graphite is denser and uniformer in

lower current density than that in higher. The LrGICs of microcrystalline graphite is different from that of flake graphite at the same

intercalation potential. Reasonable charge discharge system is beneficial to the development of the charge discharge performances of

larger current density to a small extent.

[ Key words] natural graphite; intercalation/ deintercalation of lithium ions; current density
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