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Fig. 1 XRD patterns of asspun NdgFegsBs

ribbons at different wheel speeds
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Fig. 2 Coercivity H . of NdsFegsBe ribbons

as function of wheel speed
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Table 1 M agnetic properties of NdsFegsBg ribbons

at different wheel speeds

Wheel speed ~ Anneal . I (BH ) imax

/(mes™')  temp./C  /(kA*m™ ) ' /(kJem™?)
12 350 432.2 1.08 115.0
16 630 356. 1 1.08 100. 4
20 700 358.3 1.01 110.7
26 650 327.2 1.05 105.7
32 700 335.2 1.06 106. 4
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Fig.3 TEM micrographs of optimum annealed N dg¢FegsBg ribbons
(a) —10 m/s, asspun; (b) —12 m/s, 350 ‘C annealed;

(¢) —26 m/s, asspun; (d) —26 m/s, 650 ‘C annealed
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Fig.4 AM as a function of applied field to

annealed N dgFegsBg ribbons
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[ Abstract] Nanocomposite Nd,Fe 4B/ acFe magnets are synthesized by melt-spinning a NdgFegsBg alloy and the effect of wheel

speed on the microstructure and exchange coupling interaction is investigated. The results show that there is an optimum wheel speed

about 12 m/s at which a homogeneous Nd;Fe 4B/ & Fe microstructure with fine o Fe grains is developed directly from the melt. After

low temperature annealing, the non-uniform composition from amorphous is eliminated and the magnetic properties can increase. The

maximum magnetic properties are: H .= 432.2 kA/m, J,= 1.08 T, (BH) = 115 kJ/m>. However, higher wheel speed leads to

the appearance of amorphous phase and its volume fraction increases with the increase of wheel speed. These result in a Nd,Fe 4B/ o

Fe structure with large o Fe grains after a subsequent crystallization annealing, which deteriorates the exchange coupling between

Nd,Fe 4B phase and o Fe phase and decrease its magnetic properties.

[ Key words] nanocomposite magnets; exchangse coupling interaction; microstructure; coercivity
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