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Fig 3 Elasto plastic results for wall rock
analyzed by unified strength when b is changed
(a) —Influences of b on stress distributions in
wall rock and radius of plastic zone;
(b) —Influences of b on stresses of interface between
elastic and plastic zone;

(¢) —Influences of b on radius of plastic zone
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Unified strength theory and its application in

elasto plastic analysis to tunnel

HU Xiaorong', YU Mao-hong'
(1. Department of Civil Engineering, Xi an Jiaotong U niversity, Xi an 710049, China)

[ Abstract] The characteristics of rock strength under triaxial compressive stress is analyzed by the unified strength theory. The re-
sults show that the unified strength theory can deliberate many aspects of the rock strength. In addition, the elasto-plastic analysis us-
ing the unified strength theory is also devoted to the wall rock of tunnel with circular crosssection under static hydraulic pressure .
The results show that the axial stress parallel to the tunnel and the parameter b in unified strength theory have significant effects on
the radius of plastic zone, the magnitude of stresses and the displacement of the wall rock of tunnel, comparing with theory of Mohr
Coulomb .

[ Key Words] unified strength theory; strength of the rock; wall rock of the tunnel; elasto-plastic analysis
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