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Table 1 Chemical composition by mass fraction( %)
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Fig. 1 Microstructure of cross section of sample
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Fig.2 Curve of true stress vs strain at 200 C
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Fig.3 Strain rate dependence of true

stress-strain curves at 480 C
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Fig.4 SEM macroscopic photographs

showing fracture surface at
different strain rates at 480 C
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Fig. 5 SEM microscopic photographs showing fracture surface at different strain rates at 480 C
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Fig. 6 Optical photographs of regions near fracture surface at 480 C
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Superplastic deformation mechanisms of coarse grained LY12

WU Yarqing', ZHANG Keshi', GENG Xiao-liang', YANG Yong xing’
(1. Department of Engineering M echanics, Northwestern Polytechnical University, Xian 710072, China;
2. Welding Institute, Xian Jiaotong U niversity, Xi an 710049, China)

[ Abstract] Superplastic uniaxial tensile tests of coarsegrained LY 12 are conducted. Large elongation to fracture is obtained at 10~ *

s 'and 107 ' s™ ! strain rates, while elongation to fracture is low at intermediate strain rates. Analysis of the SEM fracture surface

shows that amorphous matter at the grain boundary plays a dominant role in coarse grained superplastic behaviors. At higher strain

rates, the amorphous matter layer is thin and the grains and sub-structure size decrease during the grains extruding and turning around

among each other so that exhibit good superplastic characteristics. In this case, few cavities form and mechanical properties at room

temperature are good. At lower strain rates, nearly all grains are covered with thick amorphous matter layer which makes grain

boundary sliding more easily and enhances superplastic deforming ability, but many cavities tend to form and mechanical properties at

. . . . . ’ . .
room temperature deteriorate. At intermediate strain rates, grains can t become very fine and amorphous matter layer at the grain

boundary is not very thick, hence a samll quantity of cavities forms and the specimens exhibit a decrease in superplastic characteris-

tics.

[ Key words] LY 12 alloy; coarse grains; superplastic deformation; grain boundary; amorphous matter
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