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Table 2 Cooling rates of A356 melt under

air cooling and water-quenching ( C/5s)

T emperature Air cooling Water quenching
/C Without flux JDN— I flux_Without fluJDN— T flux
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Fig. 1 Secondary dendritic arm spacings
of A356 alloys without flux
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Fig.2 Microstructures of A356 alloy

without flux at 720 C
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Fig. 3 Secondary dendritic arm spacings
of A356 alloys with JDN- T flux
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Fig. 4 Microstructures of A356 alloy

with JDN- T flux at 720 C
(a) —Aircooling; (b) —Quenching
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Effect of rare earth flux on
secondary dendrite arm spacing of A356 alloy

NI Hong jun" ?, SUN Bao-de', JIANG Haryan', DING Werr jiang'
(1. School of Materials Science and Engineering,
Shanghai Jiaotong University, Shanghai 200030, China;
2. Department of Mechanical Engineering, Nantong Institute of Technology, Nantong 226007, China )

[ Abstract] A rare earth flux —JDN- 1 was used for A356 alloys by covering on the surface of the melt. The experimental results

indicate that the rare earth flux affects the secondary dendritic arm spacing ( dpas) of A356 alloy. The dpys obtained by water

quenching decreases by 30. 8% in comparison with that by aircooling without the covering of the flux, while the dpsgs obtained by

water quenching decreases by 88.2% in comparison with that by air cooling with the covering of JDN— 1 flux. It is suggested that

there are two critical cooling rates, v and v,. If the cooling rate v< vy, the dpygis primarily determined by slope of liquidus( M)

which is determined by the compositions, diffusion coefficient of the alloy. If v> v,, the dpssis determined by the [ RE] of JDN-

[ flux and solidification time t¢. If v < v< v, the dpasis determined by ¢¢, [ RE] and M together.

[ Key words] rare earth flux; A356 alloy; secondary dendritic arm spacing
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