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Fig.1 SEM image of WC-8% Co pow der mixture

Fz1 YGCSEAK Mkt aE
Table 1 Characteristics of WC-8% Co

pow der mixture

w (Ct)/ % w (Cf)/ % w(0)/ % w (Co) /%
5.70 0.13 0.33 8. 11
Tap density/ Apparent density/ Grain Specific area/
(g2em™?) (grem™ ) size/Bm__ (mm’g" )
4.85 4.18 3.2 1.35
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Table 2 Properties of binder components

C Melting Density
Component ontent  nonomer structure temperature o
w/! % o 3
tw T (grem™?)
PwW 60 CoHops 2 58 0. 900
LPW 5 CiHauy 2 0. 855
HDPE 10 tCH,—CH, } , 139 0. 950
£ CHz_?H ¥
pp 10 142 0. 900
CH;
DOP 5 Ca4H3504 18 0.978
+ CHz_CHz—?H_CHz ¥
EPDM 5 0. 860
CH3
SA 5 CH;[ CH2]16COOH 66 0. 960

B, TSGR B R R 3R N 62% (1A 50)
TR IE IR 73 Ak B ) AT — 0k (A IR) A =200k
NG . UG5 3AE Hy, Noy No 5 Hy BIVRAAE
AT T . Hy 8% KT 99.995%, H 0, Fl1 H,0
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Fig.2 Temperature curve of debinding process
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Fig. 3 Correlation of debinding atmosphere and
carbon content of as-debound and
assintered specimens
1 —Total carbon content of assintered specimens;

2 —Total carbon content of asdebound specimens;

3 —Dissociated carbon content of as-debound specimens;

4 —Dissociated carbon content of as sintered specimens
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Fig. 4 Correlation of debinding atmosphere,
oxygen content and TRS of as sintered specimens
1 —Oxygen content of as-debound specimens;

2 —Oxygen content of assintered specimens;

3 —Transverse rupture strength of as sintered specimens
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Fig. 5 Correlation of solvent debinding time,
binder loss ratio and carbon content

of as-debound specimens

1 —Binder loss ratio; 2 —Total carbon content
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Fig. 6 Correlation of high temperature holding
time, debinding atmosphere and carbon

content of as-debound specimens
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Fig. 8 Correlation of debinding time, binder loss
ratio and carbon content of

as-debound specimens

1 —Binder loss ratio; 2 —T otal carbon content
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Carbon control during debinding process of

cemented carbide made by powder injection molding

ZHU Bacjun', QU Xuamrhui"?, TAO Ying’, XIAO Ping-an', QIN Mingli'
(1. State Key Laboratory for Powder Metallurgy, Central South U niversity,
Changsha 410083, China;
2. School of M aterials Science and Engineering, University of Science and T echnology Beijing,
Beijing 100083, China;
3. Department of Materials Science and Engineering, Central South U niversity,

Changsha 410083, China)

[ Abstract] Carbon control of WC-8% Co tungsten cemented carbide during debinding process of powder injection molding was in-
vestigated. Effects of debinding method including thermal debinding, solvent debinding and condensed solvent debinding on carbon
content were studied. The results show that thermal debinding in N, atmosphere can not completely remove the binder, some binder
residues leave behind as free carbon. Thermal debinding in H, causes severe carbon loss while thermal debinding in 75% N,+ 25%H,
atmosphere gains an ideal carbon balance. Two step debinding method such as solvent debinding plus sequent thermal debinding and
condensed solvent debinding plus sequent thermal debinding can not only obviously reduce debinding time, but also endow the technol-
ogy extensive flexibility to debinding atmosphere and adjustability of carbon content. Moreover, compared with solvent debinding,
condensed-solvent-debinding can remove binder more completely and gain debound specimens with higher strength.

[Key words] powder injection molding; thermal debinding; solvent debinding; condensed-solvent-debinding; hardmetal; carbon

content
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