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Table 1 T heoretical crystal structure parameters

dss/nm  dyes/nm B/ GPa

Values ao/ nm Xs

0.5382 0.3846 0.2144 0.2249 154

T heoretical

Experimental 0.5416  0.385 0.2162 0.2269 145
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Table 2 Calculated crystal structure parameters

under external pressure

Calculation

S ao/ nm Xs dss/ nm d pes/ nm
condition
Fixed Xs 0.5157 0.3850 0.2055 0.2155
Fixed a 0.5416 0.3794 0.2269 0.2258
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Fig. 1 Effect of structural strain on energy band of pyrite

(a) —Fixed ag and Xg; (b) —Decreasing ag; (c¢) —Decreasing Xg; (d) —Decreasing ag and X g
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Fig. 2 Effect of structural strain on state density of pyrite
(a) —Decreasing ag; (b) —Decreasing X g; (c¢) —Decreasing agand X g

(The solid curve shows state density of unstrained pyrite, while the dotted curve is state density of strained pyrite)
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Fig. 3 Energy band diagram at

pyrite-solution interface
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Fig.4 Mixed potential model of pyrite

oxido-dissolution by oxygen
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Computational simulation to mechanical activation of pyrite ( [ )

—Relation of structural strain to chemistry reaction activity

XTAO Qi, QIU Guan-zhou, HU Yue hua
( Department of Mineral Engineering, Central South University, Changsha 410083, P. R. China)

[ Abstract] Effect of external high pressure on crystal structure of pyrite ( FeS,) has been simulated by using abinitio norm- conserv-

ing pseudo-potential plane wave molecular dynamic method based on density functional theory, within the general gradient density ap-

proximation. The calculation of energy band structure and the density of state for strained pyrite shows that structural strain leads to

the increase of pyrite Fermi energy ( Ey) .

In addition, according to transitional state theory, mechanical activation promotes the rate

constant of chemical reaction, which is equivalent to exchange current density in the field of corrosion electrochemistry. According to

energy band model of semiconductor and mixed potential model of corrosion electrochemistry, the corrosion current of pyrite increases

with the increase of pyrite Fermi energy( Ey) and exchange current density, that is, the rate of dissolution increases. Thus it is con-

cluded that the mechanically active phenomenon of pyrite not only involves mechanism of mechanical chemistry, but also mechanism

of mechanical electrochemistry.

[ Key words] density functional theory; molecular dynamics; pyrite (FeS,); mechanical action; electronic structure; reactive activ-

ity; mechanical electrochemistry
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