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primary crystals silicon distribution
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Table 1 Emulation of relative thickness for primary crystals silicon distribution

Relative thickness of primary

N M ould Pouring Rotating crystals silicon distribution Relative
o temperature/ C temperature/ C  speed/ (r*min” ') error/ %
Experiment/ % Emulation/ %
1 250 750 770 32.36 32..37 0.03
2 200 650 770 46. 62 46. 61 0.02
3 150 700 770 56. 83 56.79 0.07
4 250 700 900 33.21 33.17 0.12
5 200 750 900 50.77 51.23 0.91
6 150 650 900 50. 89 50. 91 0.04
7 150 750 1400 33.21 33.19 0.06
8 200 700 1400 33.96 34.17 0.62
9 250 650 1400 36. 56 36. 37 0.52
F 2 WA S A A X R B TG
Table 2 Forecast of relative thickness for primary crystals silicon distribution
Experiment Predicted : Experiment Predicted ;

No value/ % value/ % Relative error/ % No. value/ % value/ % Relative error/ %
2 46. 62 46.61 0.02 1 32.36 32.46 0.31
3 56. 83 56. 84 0.02 2 46. 62 46.59 0.06
4 33.21 33.22 0.03 3 56. 83 55.84 1.74
5 50. 77 50.76 0.02 4 33.20 33.04 0.48
7 33.21 33.23 0. 06 5 50. 77 50.76 0.02
9 36. 56 36. 54 0.05 6 50. 89 50.90 0.02
1 32.36 33.42 3.27 7 33.21 33.08 0.39
6 50. 89 51.01 0.24 8 33.96 34.15 0.56
8 33.96 35.55 4.68 9 36. 56 36. 68 0.33
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Forecast of endogenetic particle distribution in FGM prepared by
centrifugal casting based on ANN

YU Srrong, ZHANG Xinrping, HE Zhenr ming
( College of Materials Science and Engineering, Nanling Campus, Jilin University,

Changchun 130025, P.R. China)

[ Abstract] Artificial neural network has been applied to acquire the constitutive relationships of endogenetic particle distribution in
FGM prepared by centrifugal casting at different mould temperature, pouring temperature and rotating speed. Building up the neural
network model of the constitutive relationship for the alloy, mould temperature, pouring temperature and rotating speed are taken as
the inputs and relative thickness of endogenetic particle distribution in FGM is taken as the output. At the same time, four layers are
constructed, six neurons are used in the first hidden layer and four neurons are used in the second hidden layer. The activation func-
tion in the output layer of the model obeys a linear function, while the activation function in the hidden layer is a sigmoid function.
Comparison of the predicted and experimental results shows that the neural network model used to predict the constitutive relationship
of the endogenetic particle distribution in FGM has good learning precision and good generalization. It’ s available to forecast endoge-
netic particle distribution in FGM prepared by centrifugal casting based on artificial neural network.

[ Key words] centrifugal casting; functionally gradient material; artificial neural network; endogenetic particle; particle distribution
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