文章编号: 1004-0609(2009)07-1278-06

溅射气压对 ZnO 透明导电薄膜光电性能的影响

周继承,李 莉

(中南大学 物理科学与技术学院, 长沙 410083)

摘 要:采用射频磁控溅射方法,在普通玻璃上制备了具有高度 *c* 轴取向的 ZnO 薄膜,研究了溅射气压(0.2~1.5 Pa) 对 ZnO 薄膜的微观结构和光电性能的影响。AFM、XRD、UV-Vis 分光光度计及四探针法研究表明:随着溅射气 压的增大,ZnO 薄膜沿 *c* 轴方向的结晶质量提高,晶粒细化,薄膜表面更加致密,晶粒大小更加均匀;ZnO 薄膜 在 400~900 nm 范围内的平均透过率均高于 85%,其中在 0.5~1.5 Pa 范围内其透过率高于 90%;样品在高纯氮气 气氛中经 350 ℃,300 s 退火后,电阻率最低达到 10⁻² Ω·cm 量级。

关键词:射频磁控溅射;ZnO薄膜;溅射气压;透明导电薄膜 中图分类号:O484 文献标识码:A

Effects of sputtering pressure on electrical and optical properties of transparent conducting ZnO thin film

ZHOU Ji-cheng, LI Li

(School of Physics Science and Technology, Central South University, Changsha 410083, China)

Abstract: ZnO thin films were deposited on glass substrate using the reactive radio-frequency (RF) magnetron sputtering method. The influences of pressure on the surface morphology, the electrical and optical properties were studied by AFM, XRD, UV-Vis spectrophoto meter and four-probe method. The experimental results indicate that the crystalline quality of ZnO thin film is improved and the thin film shows higher *c*-axis orientation with increasing the pressure. The average transparency of ZnO thin films is higher than 85% in the range of 400~900 nm under different pressures, and the average transparency is higher than 90% at the pressure between 0.5~1.5 Pa. After annealing at 350 °C for 300 s under N₂ ambient, the lowest resistivity is $10^{-2} \Omega$ ·cm.

Key words: radio-frequency magnetron sputtering; ZnO thin film; sputtering pressure; transparent conducting thin film

煤炭、石油等不可再生能源的匮乏甚至枯竭,以 及生态环境的日趋恶化,使能源问题日益成为制约国 际社会经济发展的瓶颈,同时,也大大促进了太阳能 光伏产业的迅猛发展。随着晶体硅材料价格的不断上 涨,具有原材料充裕、能耗小、成本相对低廉优势的 薄膜太阳能电池迎来了前所未有的大发展时期。透明 导电薄膜^[1-2]作为薄膜太阳能电池中不可或缺的一部 分,也已引起了人们的广泛关注和研究。

透明导电薄膜在太阳能电池的窗口层材料和电极

材料中均有广泛应用^[3]。在相当长一段时间内,研究 较多的是 ITO 薄膜^[4]。20 世纪 70 年代末,人们开始 对ZnO基透明导电薄膜开展了研究。与ITO 薄膜相比, ZnO 基透明导电薄膜具有原材料丰富、无毒、耐热温 度高,掺杂可以提高薄膜电导率和稳定性等优点^[5]。 因此,ZnO 基薄膜成为透明导电薄膜新的研究热点。

ZnO 是II-VI族具有纤锌矿结构的直接宽带隙化 合物半导体材料,晶格常数 *a*=0.324 96 nm, *c*=0.520 65 nm,在室温下的禁带宽约为 3.36 eV。它不仅可以在

基金项目:湖南省科技重大专项资助项目(08FJ1002);长沙市科技计划重大专项资助项目(K080101-11)

收稿日期: 2008-10-13; 修订日期: 2009-01-20

通讯作者:周继承,教授,博士;电话: 13873193957; E-mail: jicheng@mail.csu.edu.cn

氢等离子体环境中具有较高的稳定性,并且能够实现 优良光电特性(低电阻率、绒面结构、高透过率)的低 温生长,从而成为薄膜太阳电池中极具竞争力的透明 导电膜^[6]。

ZnO 薄膜的制备方法众多,并处于不断优化当 中^[7-8],如脉冲激光沉积(PLD)、分子束外延(MBE)、 金属有机物化学气相沉积(MOCVD)和射频/直流溅射 (RF/DC Sputtering)等^[9-11]。目前,国际上主要采用磁 控溅射和 MOCVD 技术。溅射薄膜在最佳沉积条件下 可获得高度 c 轴取向、表面平整度高,可见光透过率 高及光电性能良好的薄膜^[12]。KING 等^[13]在研究中发 现, ZnO 薄膜电阻率可以在 10^{-4} ~ 10^{12} Ω·cm 之间变化 17个数量级。JEONG 和 PARK^[14]制得的 ZnO 薄膜及 掺杂 Al 的 ZnO 薄膜是很好的透明导电薄膜,其可见 光透过率最高可达 95%, 电阻率最小为 1.4×10⁻⁴ Ω·cm。目前,许多研究者^[15-16]通过掺杂来提高 ZnO 薄膜的导电能力,掺杂元素主要有 Al 和 Ga 等。然而 由于溅射过程所涉及的控制参数多,使得薄膜质量和 制备工艺的稳定性很难得到保证。为此,许多人致力 于研究各项溅射参数对薄膜性能的影响,如陈新亮 等^[17]研究了衬底温度对 ZnO 透明导电薄膜特性的影 响,LIU等^[18]和陈晓清等^[19]研究了退火温度对 ZnO 薄 膜结构和发光特性的影响,此类研究结果对于制备高 质量的 ZnO 薄膜具有重要价值。也有不少文献研究氧 流量,氧氩比对薄膜性能的影响,但关于射频溅射下 溅射气压对 ZnO 薄膜影响的研究相对较少, 且本文作 者发现溅射气压对 ZnO 薄膜的生长行为起着至关重 要的作用,并影响着 ZnO 薄膜的光电性能,所以,研 究溅射气压对 ZnO 薄膜形貌结构和光电性能的影响 很有必要。

本文作者采用射频磁控溅射法,在室温下制备了 具有高度 c 轴取向的 ZnO 薄膜。利用台阶仪、原子力 显微镜(AFM)、X 射线衍射仪(XRD)等测试技术,对 不同溅射气压条件下制备的 ZnO 薄膜的微观结构和 表面形貌进行了分析。利用紫外-可见光分光光度计 和四探针测试薄膜样品的透过率和方块电阻,分析溅 射气压对 ZnO 薄膜光电性能的影响。

1 实验

本实验采用射频磁控溅射法制备 ZnO 薄膜。采用 99.99%氧化锌陶瓷靶,用普通玻璃作为基片,本底真 空度为 1.0×10⁻³ Pa,氩气(Ar)为溅射气体,靶基距保 持为 60 mm。溅射前衬底在 200 ℃下烘烤 10 min,溅 射时衬底未加热,溅射时保持基片自转。对所有的样 品,溅射功率保持在 100 W,溅射时间均为 30 min, 在 0.2~1.5 Pa 的范围内改变溅射气压。表 1 所列为薄 膜制备的具体工艺参数。对制备的 ZnO 薄膜样品,在 RTP-500 型快速热退火仪上进行了退火处理,具体参 数见实验结果与分析部分。

采用 Alpha-StepIQ 台阶仪测量了薄膜样品的厚度。用原子力显微镜(AFM)表征 ZnO 薄膜的表面形貌。 用 Y-2000X 射线衍射仪(XRD)测试薄膜的晶体结构, X 射线源为 Cu K_α射线源,波长 λ=0.154 nm。用 TU-1800PC 型分光光度计测量了薄膜的光透过率。用 四探针测量了薄膜的方块电阻。

2 结果与讨论

2.1 溅射气压对溅射速率的影响

从表1中可以发现,随着溅射气压的升高,溅射 速率有所减小,但变化并不是很大,且在大于0.5 Pa 条件下,溅射速率变化得更加缓慢。溅射气压太高时, 溅射粒子与工作气体碰撞的几率增大使散射程度增 加,因而到达衬底的几率降低,结果降低了薄膜的沉 积速率。

2.2 溅射气压对薄膜表面形貌和晶体结构的影响

众所周知,薄膜的性能不但受到化学成分的影响, 而且表面形貌和微观结构的作用也不可忽略。对于半导

表1 ZnO 薄膜的制备工艺参数

Table 1 Preparation process parameters of ZnO fill
--

Sample No.	Sputtering pressure/Pa	Deposition power/ W	Deposition time/ min	Thickness/ nm	Deposition speed/ (nm·min ⁻¹)
1	0.2	100	30	210	7
2	0.5	100	30	190	6.33
3	1.0	100	30	170	5.67
4	1.5	100	30	150	5

图1 不同溅射气压下的 ZnO 薄膜表面形貌

Fig.1 Surface morphologies of ZnO thin films at different pressures: (a) 0.2 Pa; (b) 0.5 Pa; (c) 1.0 Pa; (d) 1.5 Pa

图 2 表面粗糙度随溅射气压的变化

Fig.2 Change of surface roughness of ZnO thin film with pressure

体薄膜而言,表面形貌直接影响着其光学和电学性能。

图 1 所示为不同溅射气压条件下 ZnO 薄膜的表面 形貌。图 2 所示为 ZnO 薄膜的表面粗糙度随溅射气压 的变化曲线。

结合图 1 与 2 可以看出,在不同溅射气压下 ZnO 薄膜的表面粗糙度均小于 5 nm,说明薄膜表面的起伏 总体较小,表面比较平滑。溅射气压小于 0.5 Pa 时, 粗糙度相对较大,晶粒大小均匀度较差;而当溅射气 压为 0.5~1.5 Pa 时,粗糙度减小,晶粒细化,表面更 加致密。总体而言,随着溅射气压的升高,薄膜表面 粗糙度呈现减小的趋势。

图 3 所示为 4 个样品的 XRD 谱。从图 3 中仅观 察到 ZnO 的(002)衍射峰,说明不同溅射气压下的 ZnO 薄膜均呈现高度的 c 轴择优取向,而且所有样品的(002) 衍射峰的衍射角都接近标准衍射角 34.379°,可见本次 样品中存在较小的应力。表 2 所列为 ZnO 薄膜的 XRD 分析结果,其晶粒尺寸采用 Scherrer 公式^[20]计算所得。 结合表 2 和图 3 可知,随着溅射气压的升高,薄膜的 (002)衍射峰先减小后增大, 0.5 Pa 时晶粒尺寸较小, 衍射峰强度相对较弱; 1.5 Pa 时强度最大,说明气压 的增大有利于晶粒沿 c 轴方向的生长。随着溅射气压 的增大,晶粒尺寸有减小的趋势,与 AFM 分析的粗 糙度变化相符。

分析表明:在本实验条件下,随着溅射气压的增大,ZnO薄膜沿 c 轴方向的结晶质量提高,晶粒细化,薄膜表面更加致密,晶粒大小更加均匀。

2.3 ZnO 薄膜光电性能分析

ZnO 薄膜的光学性能取决于薄膜的结晶质量,光

表2 不同溅射	气压下 ZnO 薄朋	莫的 XRD 分	析结果		
Table 2XRD a	analysis results of	f ZnO thin fil	m at different pressures		
Sample No.	Pressure/Pa	2 <i>θ</i> /(°)	Plane spacing/nm	FWHM/(°)	Grain

Sample No.	Pressure/Pa	2θ/(°)	Plane spacing/nm	FWHM/(°)	Grain size/nm	Lattice constant/nm
1	0.2	34.397	0.260 5	0.623	13.32	0.521 0
2	0.5	34.303	0.261 2	0.699	11.87	0.522 4
3	1.0	34.301	0.261 2	0.656	12.65	0.522 4
4	1.5	34.200	0.262 0	0.674	12.31	0.524 0

图 3 不同溅射气压下 ZnO 薄膜的 XRD 谱 Fig.3 XRD patterns of ZnO thin film at different pressures

学性能分析可以反映出薄膜更细微层次上的结晶特征。图4所示为不同溅射气压下ZnO薄膜的透射光谱。 从图4可以看出,在可见光及近红外光(400~900 nm) 范围内,光的散射作用较小,干涉作用明显,不同溅 射气压下的ZnO薄膜均具有很高的透过率,平均透过 率都超过85%,说明薄膜内的缺陷和杂质吸收很小。 其中在0.5~1.5 Pa 溅射气压下沉积的ZnO薄膜在 400~900 nm 波长范围内的透过率超过了90%,可能由 于在0.5~1.5 Pa 溅射气压下得到的薄膜的表面粗糙度 小于2.1 nm,减少了光的反射,从而得到较高的透过 率。

利用透射光谱可以同时测定 ZnO 薄膜的光学带 隙宽度。根据半导体的能带理论,直接带隙半导体材 料的吸收系数与光学带隙满足以下公式^[21]

 $\alpha h v = A(h v - E_g)^{1/2}$

式中: α 为吸收系数; hv 为光子能量; A 为常数; E_g 为带隙宽度。表 3 中 E_g 就是根据切线法所得到的 ZnO 薄膜的光学带隙。不同溅射气压下沉积的 ZnO 薄膜的光学带隙宽度在 3.45 eV 左右,高于 ZnO 体材料 的室温光学带隙宽度,光学吸收边有向短波方向移动 的趋势,说明溅射气压对 ZnO 的光学禁带宽度有一定

Fig.4 Transmitted spectra of ZnO thin film at different pressures

表3 不同溅射气压下 ZnO 薄膜的禁带宽度

Sample No.	Pressure/Pa	Band gap/eV
1	0.2	3.45
2	0.5	3.47
3	1.0	3.45
4	1.5	3.51

的影响。由此可看出,在1.5 Pa下沉积的 ZnO 薄膜的 光学吸收边发生明显蓝移,禁带宽度增大为 3.51 eV。

对于太阳能电池应用来说,ZnO 薄膜的电学特性 是另一项重要指标。本次实验中得到的4个样品都具 有较高的电阻率,退火前无法用四探针测得。图5所 示为经350、450和550℃快速热退火300 s后ZnO 薄膜电阻率随溅射气压的变化曲线。由图5可见,快 速热退火处理对薄膜的导电性能具有重要影响。从图 5可以看出,在0.5~1.5 Pa范围内沉积的ZnO薄膜经 350℃快速退火后,其电阻率相对较小。在溅射气压 较高时,薄膜的导电性能较差,因为溅射粒子在沉积 到基片过程中与氩原子多次碰撞而损失较多能量,以 致能量降低而影响薄膜的致密度、附着力以及结晶度, 从而使薄膜的导电性变差。随着溅射气压的降低,所 沉积的薄膜的电阻率减小,导电性能提高。当溅射气 压降至 0.5 Pa 时,所沉积的薄膜的电阻率达到最小值 (6.2×10⁻² Ω·cm)。从上面的透过率分析可知,在 0.5~1.5 Pa 范围内所沉积的薄膜的可见光及近红外透 过率高于 90%,所以在此条件下制得的 ZnO 透明导电 薄膜的性能相对较好。目前,研究者们通过掺杂 Al、 Ga 和 In 等杂质来提高薄膜的导电性,其中研究最广 范的是 ZnO:Al,这也是我们要进一步研究的方向。

图 5 退火后 ZnO 薄膜的电阻率随溅射气压的变化

Fig.5 Change of electrical resistivity of annealed ZnO thin film with pressure

3 结论

1) 采用射频磁控溅射法,成功制备了 ZnO 透明 导电薄膜。且随着溅射气压的增大,溅射速率从 7 nm/min 减小至 5 nm/min。

 2) 当溅射气压小于 0.5 Pa 时,表面粗糙度相对较

 大;而当溅射气压为 0.5~1.5 Pa 时,粗糙度随气压增

 大而减小,晶粒细化,表面更加致密。

3) ZnO 薄膜呈现高度 c 轴择优取向。随着溅射气 压的升高,薄膜的(002)衍射峰先减小后增大。而当溅 射气压为 0.5 Pa 时,晶粒尺寸较小,衍射峰强度相对 较弱;而当溅射气压为 1.5 Pa 时,强度最大,说明气 压的增大有利于晶粒沿 c 轴方向的生长。

4) 在 0.5~1.5 Pa 溅射气压下沉积的 ZnO 薄膜在 400~900 nm 光波范围内,其平均透过率高于 90%。

5) 在高纯氮气气氛中经 350 ℃、300 s 退火后,

ZnO 薄膜电阻率最低达到 $10^{-2} \Omega$ ·cm 量级。

REFERENCES

- LEWIS B G, PAINE D C. Applications and processing of transparent conducting oxides[J]. MRS Bulletin, 2000, 25(8): 22–27.
- [2] 蔡 珣, 王振国. 透明导电薄膜材料的研究与发展趋势[J]. 功能材料, 2004, 35(S): 76-82.
 CAI Xun, WANG Zhen-guo. Progress and trend in study on the transparent conducting films[J]. Journal of Functional Materials, 2004, 35(S): 76-82.
- [3] 谭天亚, 江 雪, 崔春阳. ZnO 基透明导电薄膜制备方法研究 进展[J]. 辽宁大学学报, 2007, 34(4): 334-338.
 TAN Tian-hua, JIANG Xue, CUI Chun-yang. Progress of deposition techniques for ZnO-based transparent conductive thin films[J]. Journal of Liaoning University, 2007, 34(4): 334-338.
- [4] 李世涛,乔学亮,陈建国.透明导电薄膜的研究现状及应用
 [J]. 激光与光电子学进展, 2003, 40(7): 53-59.
 LI Shi-tao, QIAO Xue-liang, CHEN Jian-guo. Recent research and application in transparent and conducting films[J]. Laser and Optronics Progress, 2003, 40(7): 53-59.
- [5] 肖 华, 王 华, 任鸣放, 陈国华. 磁控溅射 ZAO 透明导电 薄膜靶材及薄膜制备技术[J]. 光学技术, 2005, 31(S): 336-339. XIAO Hua, WANG Hua, REN Ming-fang, CHEN Guo-hua. Research and development of aluminum doped ZnO transparent conductive oxide films and target by magnetron-sputtering[J]. Optical Technique, 2005, 31(S): 336-339.
- [6] BANERJEE A, GUHA S. Study of back reflectors for amorphous silicon alloy solar cell application[J]. Journal of Applied Physics, 1991, 69(2): 1030–1035.
- [7] KIM S K, JEONG S Y, CHO C R. Structural reconstruction of hexagonal to cubic ZnO films on Pt/Ti/SiO₂/Si substrate by annealing[J]. Applied Physics Letter, 2003, 82(4): 562–564.
- [8] SIEBER I, WANDERKA N, URBAN I, DORFEL I, SCHIERHORN E, FENSKER F, FUHS W. Electron microscopic characterization of reactively sputtered ZnO films with different Al-doping levels[J]. Thin Solid Films, 1998, 330(2): 108–113.
- [9] LOOK D C, RENOLDS D C, LITTON C W, JONES R L, EASON D B, CANTWELL G. Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy[J]. Applied Physics Letter, 2002, 81(10): 1830–1832.
- [10] SINGH A V, MEFRA R M, WAKAHARA A, YOSHIDA A. P-type conduction in codoped ZnO thin films[J]. Journal of Applied Physics, 2003, 93(1): 396–399.
- [11] Van HEERDEN J L, SWANEPOEL R. XRD analysis of ZnO thin films prepared by spray pyrolysis[J]. Thin Solid Films, 1997, 299(1/2): 72–77.

第19卷第7期

- [12] 黄佳木,董建华. 磁控溅射沉积透明导电薄膜的结构及光电 特性研究[J]. 上海金属, 2003, 25(5): 16-20.
 HUANG Jia-mu, DONG Jian-hua. The structural and photoelectric property of transparent conductive thin films prepared by RF magnetron sputtering[J]. Shanghai Metals, 2003, 25(5): 16-20.
- [13] KING S L, GARDENIERS J G E, BOYD I W. Pulsed laser deposited ZnO for devices application[J]. Applied Surface Science, 1996, 96/98: 811–818.
- [14] JEONG W J, PARK G C. Electrical and optical properties of ZnO thin film as a function of deposition parameters[J]. Solar Energy Materials and Solar Cells, 2001, 65(1): 37–45.
- [15] JOEL N D, TIMOTHY A G, DAVID M W, TERESA M B, MATTHEW Y, BOBBY T, TIMOTHY J C. Transparent conducting zinc oxide thin films doped with aluminum and molybdenum[J]. Journal Vacuum Society Technology, 2007, A25(4): 955–960.
- [16] MINAMI T, OHTANI Y, MIYATA T, KUBOI T. Transparent conducting Al-doped ZnO thin films prepared by magnetron sputtering with dc and rf powers applied in combination[J]. Journal Vacuum Society Technology, 2007, A25(4): 1172–1177.
- [17] 陈新亮,薛俊明,张德坤,孙 建,任惠志,赵 颖,耿新华.
 衬底温度对 MOCVD 法沉积 ZnO 透明导电薄膜的影响[J].物
 理学报,2007,56(3):1563-1567.
 CHEN Xin-liang, XUE Jun-ming, ZHANG De-kun, SUN Jian,

REN Hui-zhi, ZHAO Ying, GENG Xin-hua. Effect of substrate temperature on the ZnO thin films as TCO in solar cells grown by MOCVD technique[J]. Acta Physica Sinica, 2007, 56(3): 1563–1567.

- [18] LIU H F, CHUA S J, HU G X, GONG H, XIANG N. Annealing effects on electrical and optical properties of ZnO thin film samples deposited by radio frequency magnetron sputtering on GaAs(001) substrates[J]. Journal of Applied Physics, 2007, 102(6): 063507-1-4.
- [19] 陈晓清,谢自力,张 荣,修向前,顾书林,韩 平,施 毅. 退火温度对纳米 ZnO 薄膜结构与发光特性的影响[J]. 纳米材 料与结构, 2004, 11(41): 24-27.
 CHEN Xiao-qing, XIE Zi-li, ZHANG Rong, XIU Xiang-qian, GU Shu-lin, HAN Ping, SHI Yi. Influences of annealing temperature on the structure and luminescence of nanometer ZnO films[J]. Nanomaterial and Structure, 2004, 11(41): 24-27.
- [20] BACHARI E M, BAUD G, BEN AMOR S, JACQUET M. Structural and optical properties of sputtered ZnO films[J]. Thin Solid Films, 1999, 348(1/2): 165–172.
- [21] LEE H W, LAU S P, WANG Y G. Structural, electrical and optical properties of Al-doped ZnO thin films prepared by filtered catholic vacuum are technique[J]. Journal of Crystal Growth, 2004, 268(3/4): 596–601.

(编辑 李艳红)