文章编号: 1004-0609(2009)06-1093-07

热化学反应喷涂 Al₂O₃基复合陶瓷涂层的制备及其性能

马 壮1, 曲文超1, 李智超1, 袁晓光2

(1. 辽宁工程技术大学 材料加工与表面技术研究所, 阜新 123000;2. 沈阳工业大学 材料科学与工程学院, 沈阳 110023)

摘 要:使用热化学反应热喷涂技术,在紫铜表面喷涂制备 Al₂O₃ 基复合陶瓷涂层。利用 XRD 和 SEM 分析该复 合陶瓷涂层物相组成和组织形貌,并对其热震性能、抗高温氧化性能和磨损性能进行测试。结果表明:采用热化 学反应喷涂法在紫铜表面制备的陶瓷涂层内部生成陶瓷过渡相 Al_{1.4}Si_{0.3}O_{2.7}和 Al_{1.9}Si_{0.5}O_{2.95}等,在陶瓷涂层与 Ni-Al 过渡层间存在金属间化合物 AlNi₃;该复合陶瓷涂层熔化率较高,表面呈珊瑚状;涂层与紫铜基体结合牢靠,具 有优异的高温抗氧化能力,其磨粒和粘着磨损比紫铜基体分别提高 10 倍和 15 倍。 关键词:紫铜;复合陶瓷涂层;化学反应热喷涂

中图分类号: TG 174.4 文献标识码: A

Preparation and properties of Al₂O₃ based composite ceramic coating on pure copper surface by thermo-chemical reaction spraying

MA Zhuang¹, QU Wen-chao¹, LI Zhi-chao¹, YUAN Xiao-guang²

(1. Institute of Materials Processing and Surface Technology, Liaoning Technical University, Fuxin 123000, China;

2. College of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110023, China)

Abstract: Al₂O₃-based composite ceramic coating was prepared on the surface of copper by thermo-chemical reaction spraying. XRD and SEM were used to analyze the composition and morphology of this composite ceramic coating. The thermal shock, high-temperature anti-oxidation and wear properties of the composite ceramic coating were investigated. The results show that the transition phases, such as Al_{1.4}Si_{0.3}O_{2.7} and Al_{1.9}Si_{0.5}O_{2.95}, generate within the ceramic, and AlNi₃ exists between the coating and Ni-Al transition layer. The melting rate of composite ceramic coating with a coral-like surface is high and the combination of the coating and copper matrix is well. Compared with the pure copper base, the coating has excellent high-temperature anti-oxidation capacity, the abrasive wear and adhesive wear are increased by 10 times and 15 times.

Key words: pure copper; composite ceramic coating; thermo-chemical reaction spraying

陶瓷材料大多具有离子键和共价键结构,键能高, 原子间结合力强,表面自由能低,原子间距小,堆积 致密,无自由电子运动。这些特性赋予了陶瓷材料高 熔点、高硬度、高刚度、高耐磨性、高绝缘绝热能力、 低热导率、较小热膨胀系数和无延展性等特征。

热化学反应(料浆涂覆)法制备陶瓷涂层是近年来 兴起的一种新的陶瓷涂层制备工艺^[1-3],该方法在于将 陶瓷粒子采用水基粘胶剂涂覆在工件表面,自然固化 后热固化(600~1 200 ℃)。在热固化过程中,陶瓷涂层 内部或界面处发生化学反应生成新陶瓷相,从而提高 界面强度并改善涂层性能^[4]。热化学反应法陶瓷涂层 化学反应的实质是固相反应^[5]。本文作者在前期热化 学反应陶瓷涂层的基础上^[6],用火焰喷涂技术将相应 陶瓷粒子喷涂在工件表面,用热喷涂热量代替热固

收稿日期: 2008-07-07; 修订日期: 2008-12-18

通讯作者:马 壮,教授,博士;电话: 0418-3351727; E-mail: mazh123@263.net

化加热过程,以达到使陶瓷涂层发生热化学反应的目的,本文作者称其为热化学反应喷涂法。本实验应用 新型陶瓷复合粉末,采用热化学反应热喷涂技术在紫 铜表面制备复合陶瓷涂层,将陶瓷材料的优良特性与 紫铜的强韧性、可加工性以及导电导热等特性结合起 来,以获得理想的复合涂层制品,提高紫铜在特殊工 作条件(高炉风口)下的使用性能^[7]。

1 实验

实验所用复合陶瓷粉末为高纯度 Al₂O₃、TiO₂、 SiO₂、ZnO 及 Al 粉,按 34.3%Al₂O₃-16.1%TiO₂-5.1%SiO₂-1.6%ZnO-42.9%Al(质量分数)计量比混合。Al₂O₃基陶 瓷涂层具有耐磨、耐高温、抗氧化和良好的绝热性能, 添加定量 TiO₂可提高涂层的韧性和耐冲击性能,同时 SiO₂ 和 ZnO 的加入可使混合后的陶瓷粉末在高温作 用下发生热化学反应并形成陶瓷相,以利于提高涂层 的性能^[8-13]。加入 Al 粉,利用其熔点低(933 K)及熔化 后通过毛细管作用扩散,向周围陶瓷粒表面铺展、粘 结,为体系提供了良好的液相传质条件,提高陶瓷粒 子的熔化率和半熔化率。高纯高细的 Al 粉在高温喷涂 过程中原位生成 Al₂O₃,有利于陶瓷粒子固相反应形 成复合陶瓷涂层。

喷涂材料的制备过程如下:陶瓷粉末过筛→配料 →球磨混合→200℃烘干。粉末的粒级范围为46~74 µm。陶瓷粉末采用机械球磨方式(球磨罐与磨球材质 为刚玉、球磨方式为干磨)在 N₂保护下球磨 12 h,经 球磨后,混合粉末粒度可达 38 µm。基体材料的喷涂 处理过程如下:紫铜基体喷砂粗化→喷涂 Ni-Al 层 →喷涂复合陶瓷涂层→重熔→缓慢冷却。喷涂前对 紫铜板表面喷砂处理,使喷涂表面清洁同时增加表面 粗糙度。在经处理后的表面依次喷涂 Ni-Al 过渡层和 复合陶瓷涂层。由于所用氧化物材料熔点较高,喷涂 后需经重熔处理以提高陶瓷粒子熔化率,同时也能起 到降低涂层孔隙率的作用。喷涂基体材料为轧制紫铜板,厚度为2mm。喷涂工艺参数见表1。

使用日本岛津 SSX-550 扫描电镜观察试样的界面和表面形貌, D/max 2500VL /PC 型转靶 X 射线衍射 仪分析复合陶瓷涂层物相组成。

热震实验采用整体加热法。试样整体放入电阻炉 中保温 15 min 后迅速取出水淬,对试样表面进行观 察。本实验以涂层非边角处大面积的平面涂层出现剥 落的程度作为失效判据,力图克服边角的外界离散几 何因素的影响,提高实验结果的准确性。

涂层结合强度测量使用粘接拉伸法在 WE-20 型 液压式万能试验机进行,采用改性聚丙烯粘连涂层, 测量粘接处涂层的剪切强度,拉伸速度不超过 5 mm/min。

高温抗氧化实验在箱式电阻炉中进行,氧化时间为1h,实验采用增重法,用感量为0.1 mg的光电分析天平称取氧化质量的增加,考察试样在不同高温环境下的抗氧化能力。

磨粒磨损在 ML-10 型磨粒磨损实验机上进行实验,实验参数如下:磨损行程 80 mm,转速 6 r/min,载荷 2 N,对磨材料为金相砂纸。粘着磨损在 M-200 实验机上进行实验,粘着磨损实验参数:磨损时间 5 min,载荷 300 N,磨擦轮半径为 19 mm,转速为 180 r/min,轮质为 W18Cr4V(HRC60)。

2 结果及分析

2.1 涂层形貌与物相分析

图 1(a)所示为涂层的界面 SEM 像。由图 1(a)可以 看出,陶瓷涂层与 Ni-Al 过渡层结合紧密,图中网格 状区域为喷涂高温下陶瓷涂层与过渡层内金属物质相 互结合的区域,两涂层间界线不明显,说明涂层已熔 为一体,呈现出一定的冶金结合。图 1(b)所示为涂层 的表面 SEM 像,其中白色球状和珊瑚状物质为陶瓷

表1 紫铜基体表面的依次喷涂 Ni-Al 涂层和复合陶瓷涂层的热喷涂工艺参数

 Table 1
 Parameters of spraying Ni-Al coating and ceramic coatings on pure copper based surface

Coating	Preheating temperature/°C	Jet angle/(°)	Spray distance/mm	Moving speed/(mm \cdot s ⁻¹)
Ni-Al	350-450	70-90	130-180	60-90
Ceramic	300-400	70-90	130-180	60-90
Coating	Power feeding rate/(kg· h^{-1})	Oxygen pressure/MPa	Acetylene pressure/MPa	Equipment
Ni-Al	0.9-1.2	0.8-0.9	0.08-0.11	OT-E2000-7/h
				•
Ceramic	1.0–1.5	0.8-0.9	0.08-0.11	QT-E2000-7/h

图1 涂层界面及表面形貌

Fig.1 SEM images of interface and surface of coatings: (a) Interface topography; (b) Surface morphology; (c) Remelting treatment image

粒子,周围颜色较深处为孔隙,较为平整区为融化区 域。涂层的这种组织特征缘于在火焰喷涂过程中,被 喷涂的粒子在高温火焰中被快速加热、熔化形成熔滴 (包括已经完全熔化的和部分熔化的粒子)后被高速火 焰气流冲击到基体表面快速冷却,从熔滴碰撞到粗糙 的 Ni-Al 层表面展开、平铺、融滴破碎、飞溅并与后 续飞来的熔滴及陶瓷粒子结合,从而形成珊瑚状。由 于融滴在高速撞击表面之前与空气交互作用,会吸收 一部分气体,因此,在涂层中会残留液气体,气体的 溢出会形成孔洞,另一方面,在涂层的重熔过程中, 涂层内的部分粒子会由于高温灼烧而损失,也会留下 细小的孔洞(见图 1(c))。

图 2 所示为 Ni-Al 涂层和复合陶瓷涂层的 XRD

Fig.2 XRD patterns of coatings: (a) Ni-Al coating; (b) Composite ceramic coating; (c) Melting coating

谱。由图 2 可以看出,涂层中 Ni 和 Al 元素均以单质 和氧化物形式存在, NiAl 合金在喷涂中并没有形成金 属间化合物(见图 2(a));而图 2(b)中存在金属间化合物 AlNi₃,由此可以判断,该组成物分别来源于复合陶瓷

粉末和 Ni-Al 层,即在两涂层结合处发生反应形成金 属间化合物。图 2(b)中除原有的陶瓷粒子外,其主要 成分还有 Al_{1.4}Si_{0.3}O_{2.7} 和 Al_{1.9}Si_{0.5}O_{2.95} 等物质(简称 Al,Si,O.), 该类物质的形成是由于构成复合陶瓷粉末 的 4 种氧化物所组成的 6 组二元系氧化物 Al₂O₃-SiO₂ 的液相温度最低(1 819 K),在喷涂过程中相互发生反 应,形成陶瓷过渡相。图 2(c)所示为喷涂后涂层未经 重熔和重熔后的物相比较。结果发现,过渡相化合物 Al_xSi_vO_z的衍射峰重熔后明显增强,表明涂层经重熔 后,Al_xSi_vO_z的含量有所增加,同时喷涂后涂层再重 熔也使涂层表面形貌得到一定程度的改善。结合涂层 经重熔后的 SEM 像(图 1(b)与(c))可知, 经重熔处理的 涂层表面融化区域增多,处于熔化或半熔化的球状及 珊瑚状的陶瓷粒子数量有所减少。这说明喷涂后对涂 层的重熔处理在一定程度上提高了陶瓷粒子的熔化 率。比较热化学反应(料浆涂覆)法发现,前者制备涂 层用时短,虽然喷涂热量高度集中,似乎不能完全满 足陶瓷相形成所需要的条件(长时间高温灼烧),但少 量陶瓷过渡相的生成,表明某些固相反应的前期过程 有可能进行,相关反应过程有待进一步研究。

表2 试样的热震性能

Table 2 Shock performances of samp.	les
---	-----

2.2 涂层的热震失效机理及热震性能

陶瓷材料的热震破坏分为热冲击作用下的瞬时断 裂和热冲击循环作用下的开裂、剥落,最终整体破坏 两大类,即基于热弹性理论导出的热震断裂理论和基 于断裂力学理论导出的热震损伤理论^[14]。参考应力公 式对断裂理论判据公式进行推导,得出若要获得良好 的抗热震性,要求材料具有较低的热膨胀系数、较高 的弹性模量以及较低的断裂强度。

热震实验在箱式电阻炉中进行,试样分成如下 4 组。A: 紫铜基体喷砂粗化→喷涂复合陶瓷涂层(无 Al 粉); B: 紫铜基体喷砂粗化→喷涂复合陶瓷涂层; C:紫铜基体喷砂粗化→喷涂 Ni-Al 涂层→喷涂复合 陶瓷涂层(无 Al 粉); D: 紫铜基体喷砂粗化→喷涂 Ni-Al 涂层→喷涂复合陶瓷涂层。各涂层的抗热震性 能如表 2 所列。由表 2 可以看出,添加 Al 粉的复合陶 瓷涂层(D)具有最好的抗热震性。通过制备 Ni-Al 过渡 层和添加 Al 粉有效地克服了各层间膨胀系数的差异, 同时满足热震损伤理论要求材料具有一定的弹性模量 和断裂强度的需求。A 组试样中,两涂层的热膨胀 系数差异,高温下瞬间冷却,涂层从基体完全脱落。

Serial No.	Temperature/°C	Cycle number	Thermal shock phenomena	
	300	7-10	Coating covers with cracks, cracks extend so that parts of coatings come off	
٨	400 4–8 Coating t		Coating tilts up from edge, then most coatings come off	
A	500	2-3	Coating and matrix seriously separate	
	600	1	Coating transient comes off	
	300	19–21	Cracks lead to coating breaking	
D	400	11-13	Edge of coating tips up and cracks appear, coating on surface is broken	
Б	500	7-9	Edge of coating has a serious separation	
600 3-5			Edge of coating has a serious separation	
	300	21-25	Good adhesion between Ni-Al coating and matrix, small cracks on surface	
C	400	15-18	Good adhesion between Ni-Al coating and matrix, small cracks on surface	
C	500	11-14	Good adhesion between Ni-Al coating and matrix, small cracks on surface	
	600	8-9	Good adhesion between Ni-Al coating and matrix, most coatings come off	
	300	30	Coating integrity	
D	400	30	Coating integrity	
D	500	30	Coating integrity	
	600	30	Adhesion between Ni-Al coating and matrix has slight separation	

B 和 C 两组试样通过减缓层间的膨胀系数差异较大, 增强了涂层的弹性模量,一定程度上提高了涂层的结 合能力。从热震损伤理论来看,层间断裂与裂纹扩展 共同作用导致涂层失效。因此,提高涂层的热震性能 不仅需减小层间热膨胀系数的差异,还要考虑提升涂 层的弹性模量和断裂强度,即赋予陶瓷涂层一定的金 属特性。

2.3 涂层的结合性能

金属基材料与陶瓷材料的热膨胀系数相差较大, 导致热喷涂制备的涂层容易与金属基体分离,无法形 成稳定的涂层,因此,在制备涂层过程中,需要在纯 铜基体表面喷涂过渡涂层,以缓解陶瓷材料与金属材 料较大的膨胀系数差异。多元材料的线膨胀系数 *a* 可 表示为(见表 1)

$$\alpha = \frac{\sum \alpha_i M_i}{\sum M_i} \tag{1}$$

$$M = E(1 - 2\mu)^{w/\rho}$$
 (2)

式中 E为弹性模量, **MPa**; μ 为泊松比; ρ 为密度, g/cm³; w为质量分数; α_{i-1} 为组元的线膨胀系数, \mathbb{C}^{-1} 。

表3 各组元的元线膨胀系数

Table 3	Linear expa	insion c	oefficient	of ea	ach materia	1
---------	-------------	----------	------------	-------	-------------	---

Material	$\alpha/(10^{-6} ^{\circ}\mathrm{C}^{-1})$
Copper	16.7
Al	23.6
Al_2O_3	8.4
SiO ₂	0.5
TiO ₂	7.0-8.1
ZnO	7.0
Ni-Al	13.8
Composite ceramic coatings(without Al)	7.8
Composite ceramic coatings	11.4

由表1可知,由基体→过渡层→复合陶瓷涂层 的膨胀系数逐渐减小,且相差较小,有效地提高涂层 的结合性能。经拉伸实验测试,涂层的平均结合强度 为7.54 MPa。拉伸断口形貌表明,断裂处为Ni-Al 层 与紫铜基体间,而复合陶瓷涂层与Ni-Al 层结合较好。 这是由于 Ni-Al 涂层本身具有一定的孔隙率,在随后 喷涂复合陶瓷涂层时,粉末会进入孔隙中并形成"钉 扎"效应,可增加两涂层间的结合性能;另一方面, 复合涂层中的Al粉与Ni-Al合金具有良好的金属相容 特性,且涂层间存在化学结合,因此,拉伸时表现为 紫铜结合面的断裂。

2.4 涂层的抗氧化性能

涂层抗氧化性能是通过测量试样在高温环境下氧 化物的生成量,判断该物质的抗氧化能力^[12, 15-16],大 多实验表明,Al₂O₃涂层具有良好的耐高温性能^[17-19]。 实验中测得不同温度下紫铜样品与制备涂层样品的氧 化质量增加数据,结果列于表 4。m_{cu}代表紫铜样品单 位面积氧化质量增加,m_{TC}代表喷涂涂层后的样品单 位面积氧化质量增加。样品氧化动力学曲线近似符合 抛物线规律,即符合公式:

$$\left(\Delta m/S\right)^2 = 2K_{\rm p}t + c \tag{3}$$

式中 $\Delta m/S$ 为单位面积质量的增加, mg/cm²; K_p 为 抛物线氧化速率常数, mg²/(cm⁴·min); t 为氧化时 间, min; c 为 积分常数。

表 4	不同温度氧化质量的增加
12 =	不可血及毛化灰里的角加

 Table 4
 Mass gain of oxidation tested at different temperatures

<i>T</i> /K	$m_{\rm Cu}/(10^{-2}$ mg·cm ⁻²)	$\frac{K_{\rm pCu}}{(10^{-4}{\rm mg}^2 \cdot {\rm cm}^{-4} \cdot {\rm min}^{-1})}$	$m_{\rm TC}/(10^{-2} { m mg\cdot cm^{-2}})$	$\frac{K_{\rm pTC}}{\rm cm^{-4} \cdot min^{-1}}$
773	21.2	3.75	1.62	2.19
823	39.6	13.07	2.01	3.37
873	266.0	589.60	2.34	4.56
1 073	480.0	1 920.00	2.59	5.59

由表 4 可以看出,氧化温度变对紫铜的氧化性能 影响较大,对陶瓷涂层的影响较小。由于涂层存在孔 隙,高温使涂层内部的少量金属氧化,但氧化质量增 加现象不明显。由低温至高温的氧化过程中,陶瓷涂 层的氧化速率常数增加幅度较小,而纯铜的氧化速率 常数增加幅度较大。

2.5 涂层的磨损性能

表 5 所列为涂层的磨损数据。由表 5 所列的磨损 数据可以得出:磨粒磨损条件下,复合陶瓷涂层的耐 磨性比紫铜基体的耐磨性提高了近 2 倍,封孔后其耐 磨性比紫铜基体的提高约 10 倍;粘着磨损条件下,陶 瓷涂层的耐磨性较基体的提高 5 倍,而封孔后提高 15 倍。

表5 涂层的磨损数据

Table 5Wear data of coatings

Sample -	Abrasive wear		Adhesive wear		
	Mass loss per unit area/(µg·mm ⁻²)	З	Mass loss/mg	3	
Copper	113.5	1.000	12.5	1.000	
Ceramic coatings	65.5	0.577	2.4	0.192	
Hole sealing	10.5	0.093	0.8	0.064	

 ε is relative wear rate.

3 结论

1) 采用热化学反应喷涂法制备了复合陶瓷涂层, 涂层表面陶瓷粒子的熔化率较高,呈珊瑚状;涂层内 部生成了陶瓷过渡相 Al_{1.4}Si_{0.3}O_{2.7}和 Al_{1.9}Si_{0.5}O_{2.95}等; 涂层间生成金属间化合物 AlNi₃,新物质的生成提高 了涂层的结合性能。

2)根据陶瓷涂层的热震失效机理及陶瓷与金属间的热膨胀系数差异,通过制备 Ni-Al 过渡层及在陶瓷粉末中添加金属 Al 粉,制备的复合陶瓷涂层抗热震能力强,喷涂层间的结合强度较高。

3) 在1073 K 下,复合陶瓷涂层的高温抗氧化性 能最佳,其磨粒磨损性能约是紫铜基体的10倍,粘着 磨损约为紫铜基体的15倍。

REFERENCES

- 马 壮,孙方红,李智超,赵越超. 热化学反应法制备金属基 陶瓷涂层的现状和发展[J]. 电镀与涂饰, 2006, 25(8): 48-50.
 MA Zhuang, SUN Fang-hong, LI Zhi-chao, ZHAO Yue-chao. Current status and development of metallic ceramic coatings prepared by thermochemical reaction method[J]. Electroplating/ Finishing, 2006, 25(8): 48-50.
- [2] 陈建康, 屠平亮, 周建初. 用热化学反应法制备金属陶瓷涂 层-涂层技术值得重视的新发展[J]. 材料工程, 1991(4): 17-20. CHEN Jian-kang, TU Ping-liang, ZHOU Jian-chu. Thermochemically formed metallic ceramic coatings-A valuable new development of coating technology[J]. Journal of Materials Engineering, 1991(4): 17-20.
- [3] 马 壮,魏宝佳,李智超.金属表面热化学反应法陶瓷涂层研究现状及工艺名称商権[J]. 硅酸盐通报, 2007, 26(5): 990-993.

MA Zhuang, WEI Bao-jia, LI Zhi-chao. Actuality of research on thermo-chemically formed ceramic coating and the discussion on this technique name[J]. Bulletin of the Chinese Ceramic Society, 2007, 26(5): 990–993.

- [4] 马 壮,孙方红,李智超,赵越超.热化学反应法制备氧化铝基陶瓷涂层及性能研究[J]. 热加工工艺,2007,36(12):1-3.
 MA Zhuang, SUN Fang-hong, LI Zhi-chao, ZHAO Yue-chao.
 Alumina matrix ceramic coatings prepared by thermochemical reaction method and study on its properties[J]. Hot Working Technology, 2007, 36(12): 1-3.
- [5] 万怡灶,罗红林,周贤良,伍家红,刘 燕. 用热化学反应法 制备金属陶瓷涂层工艺的研究[J]. 材料工程,1997(10):25-28.
 WAN Yi-zao, LUO Hong-lin, ZHOU Xian-liang, WU Jia-hong, LIU Yan. Study on fabrication of metallic ceramic coatings by thermochemical reaction method[J]. Journal of Materials Engineering, 1997(10): 25-28.
- [6] 孙方红. 热化学反应法 Al₂O₃ 基纳米复合陶瓷涂层的制备及 性能研究[D]. 阜新: 辽宁工程技术大学, 2006: 11-13. SUN Fang-hong. Study on the preparation and properties of the nano-scale composite ceramic coating of the aluminum matrix by thermochemical reaction method[D]. Fuxin: Liaoning Technical University, 2006: 11-13.
- [7] 马 壮, 曲文超, 李智超. AZ91D 热化学反应热喷涂陶瓷涂层 热震性研究[J]. 表面技术, 2008, 37(2): 52-53.
 MA Zhuang, QU Wen-chao, LI Zhi-cha. Research on thermal-shock resistance of thermo-chemical reaction flame spraying ceramic coatings on AZ91D[J]. Surface Technology, 2008, 37(2): 52-53.

 [8] 王赫莹,李德元,马晓丽. 等离子弧喷涂 Al₂O₃ 陶瓷涂层低温 抗热震性能的研究[J]. 材料保护, 2006, 39(4): 23-25.
 WANG He-ying, LI De-yuan, MA Xiao-li. Study of low-temperature thermal shock resistance of plasma-arc sprayed alumina ceramic coating[J]. Materials Protection, 2006, 39(4): 23-25.

[9] 花国然,黄因慧,赵剑峰,王 蕾,田宗军,张建华,张永康. 激光熔覆纳米 Al₂O₃ 等离子喷涂陶瓷涂层[J].中国有色金属 学报,2004,14(2):199-203.

HUA Guo-ran, HUANG Yin-hui, ZHAO Jian-feng, WANG Lei, TIAN Zong-jun, ZHANG Jian-hua, ZHANG Yong-kang. Plasma-sprayed ceramic coating by laser cladding of Al_2O_3 nano-particles, 2004, 14(2): 199–203.

- [10] 杨元政,刘正义,庄育智.离子喷涂 Al₂O₃ 陶瓷涂层的结构与 组织特征[J]. 兵器材料科学与工程,2000,23(3):7-11.
 YANG Yuan-zheng, LIU Zheng-yi, ZHUANG Yu-zhi. Structure of plasma sprayed Al₂O₃ ceramic coating[J]. Ordnance Material Science and Engineering, 2000, 23(3): 7-11.
- [11] 李春福,王 斌,王 戎,丁武成,牛艳花,朱泽华. 纳米掺 杂 Al₂O₃/ZrO₂ 等离子喷涂涂层的组织及性能[J]. 中国有色金 属学报, 2007, 17(9): 1397-1403.
 LI Chun-fu, WANG Bin, WANG Rong, DING Wu-cheng, NIU Yan-hua, ZHU Ze-hua. Microstructure and performance of nano-doping Al₂O₃/ZrO₂ plasma spray coatings[J]. The Chinese Journal of Nonferrous Metals, 2007, 17(9): 1397-1403.
- [12] RAMASWANY A, SEETHARAMU S, VARMA K B R. Al₂O₃-ZrO₂ composite coatings for thermal-barrier application[J]. Compo Sci Tech, 1997, 57: 81–89.
- [13] 孙永兴, 王引真, 何艳玲. 稀土氧化物添加剂对 Al₂O₃等离子 喷涂层的影响[J]. 材料保护, 2001, 34(6): 8-9.
 SUN Yong-xing, WANG Yin-zhen, HE Yan-ling. Effects of RE oxides on plasma sprayed Al₂O₃ coatings[J]. Materials Protection, 2001, 34(6): 8-9.
- [14] 张清纯. 陶瓷材料力学性能[M]. 北京: 科学出版社, 1987:
 280.
 ZHANG Qing-chun. Mechanical properties of ceramic materials

[M]. Beijing: Science Press, 1987: 280.

[15] 张 罡, 武颖娜, 梁 勇, 冯钟潮, 刘方军, 段爱琴, 巴瑞章.

Al₂O₃ 对等离子喷涂热障涂层高温氧化及热震性能的影响[J]. 中国有色金属学报, 2002, 12(3): 409-414.

ZHANG Gang, WU Ying-na, LIANG Yong, FENG Zhong-chao, LIU Fang-jun, DUAN Ai-qin, BA Rui-zhang. Influence of Al₂O₃ additive on plasma sprayed thermal barrier coatings[J]. The Chinese Journal of Nonferrous Metals, 2002, 12(3): 409–414.

- [16] CHEN X, EVANS A G, HUTCHINSON J W. Simulation of the high temperature impression of thermal barrier coatings with columnar microstructure[J]. Acta Materialia, 2004, 52: 567–571.
- [17] 穆柏春,张丽娟,谷志刚. 耐热防腐蚀复相陶瓷涂层的研究
 [J]. 材料保护, 1997, 30(6): 24-26.
 MU Bo-chun, ZHANG Li-juan, GU Zhi-gang. Heat resisting and corrosion resistance of composite ceramic coating [J]. Materials Protection, 1997, 30(6): 24-26.
- [18] MILLER R A. Thermal barrier coatings for aircraft engines: History and directions[J]. Journal of Thermal Spray Technology, 1997, 6(1): 35–42.
- [19] 林 锋,于月光,蒋显亮,曾克里,任先京,李振铎.等离子 体喷涂纳米结构热障涂层微观组织及性能[J].中国有色金属 学报,2006,16(3):482-487.

LIN Feng, YU Yue-guang, JIANG Xian-liang, ZENG Ke-li, REN Xian-jing, LI Zhen-duo. Microstructures and properties of nanostructured TBCs fabricated by plasma spraying[J]. The Chinese Journal of Nonferrous Metals, 2006, 16(3): 482–487.

(编辑 龙怀中)