文章编号: 1004-0609(2009)06-1087-06

温度对 Mg-3Ni-2MnO2 储氢材料吸放氢过程 相转变行为的影响

张文丛, 贾彬彬, 于元春

(哈尔滨工业大学 (威海) 材料科学与工程学院, 威海 264209)

摘 要:利用充氢反应球磨工艺制备氢化态 Mg-3Ni-2MnO2 储氢复合材料,测试材料的吸放氢动力性能,并利用 Avrami 指数研究储氢材料吸放氢过程中相转变行为特征。结果表明:在研究的温度范围内,温度越高,越有利于 提高 Mg-3Ni-2MnO2 储氢复合材料的吸放氢速度; 在 150~200 ℃范围内吸氢时, 其 Avrami 指数由初始阶段的 1.0~1.5 很快变为 0.5,即储氢材料很快进入已形成相的增厚阶段;在 150~200 ℃范围内,温度变化对吸氢相转变 影响不大,但影响相转变速率;放氢过程中,根据 Avrami 指数的变化,相转变基本过程为形核长大阶段和新相 继续稳定长大阶段(无新的晶核形成),温度变化同样影响其放氢速率,但对其放氢过程的相转变规律影响不大。 关键词:储氢材料;吸放氢;Avrami指数;形核长大;动力学 中图分类号: TG.139 文献标识码: A

Effect of temperature on phase transformation behaviors of Mg-3Ni-2MnO₂ hydrogen storage materials during hydrogenation and dehydrogenation process

ZHANG Wen-cong, JIA Bin-bin, YU Yuan-chun

(School of Materials Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, China)

Abstract: The hydrided Mg-3Ni-2MnO₂ hydrogen storage materials were fabricated through ball-milling under hydrogen atmosphere. The hydrogenation and dehydrogenation dynamic properties were measured. The Avrami index was used to study the phase transformation behavior character. The results show that in the range of temperatures selected, the higher the temperature is, the faster the hydrogenation and dehydrogenation velocities of the fabricated Mg-3Ni-2MnO₂ hydrogen storage materials are. When the materials is absorbed in the range of 150-200 °C, the value of Avrami index can change quickly from 1.0-1.5 in the initial period to about 0.5, indicating that this period is for the new phase to increase thickness quickly. The change of temperature has no obvious effect on the phase transformation behavior character whereas affects the phase transformation velocity. During the dehydrogenation process, its phase transformation period includes nucleation and growth, and steady growth of the new phase with no new crystal nucleus appearing, according to the change of Avrami index. The change of temperature also affects the dehydrogenation velocity and has no obvious effect on the phase transformation behavior character.

Key words: hydrogen storage materials; hydrogenation and dehydrogenation; Avrami index; nucleation and growth; dynamics

广阔的应用前景^[1-2],其理论储氢量为 7.6%,是一 材料配方设计^[6-8]的日趋完善,利用机械合金化材

镁基储氢材料在氢能安全高效存储方面具有 种大容量的储氢材料。随着材料制备手段^[3-5]以及

基金项目: 山东省科技攻关计划资助项目(2008GG10007004, 2008GG10003005); 山东省中青年科学家奖励计划资助项目(2006130) 收稿日期: 2008-10-22; 修订日期: 2009-02-11 通讯作者: 张文丛, 副教授, 博士; 电话: 0631-5687209; E-mail: zhangwencong@yahoo.com.cn

中国有色金属学报

料制备工艺^[9-10],可获得具有优异吸放氢动力学性能的镁基储氢材料^[11-13]。

本文作者利用充氢反应球磨技术制备 Mg-3Ni-2MnO₂储氢复合材料,充分发挥Ni、MnO 的催化功能,实现对材料吸放氢动力学性能的改 善,并利用 Johnson-Mahl-Avrami(J-M-A)方程求解 Avrami 指数,对储氢材料吸放氢过程的相转变行为 特征进行研究。

1 实验

利用行星式球磨机 QM-1SP 制备 Mg-3Ni-2MnO₂ 复合材料。试验中所选用的原材料产地及基本性质 如表 1 所列。利用自行设计的测试装置(如图 1 所示) 进行吸放氢过程动力学性能测试。本试验所选取的 样品成分为 95Mg-3Ni-2MnO₂(质量分数)。将混合充 分的样品放入不锈钢球磨罐中充氢球磨,氢气的压 力为 0.5 MPa,球料比为 20:1,球磨罐的转速为 300 r/min。利用日本日立公司生产的设备型号为 S-570 的扫描电镜对经球磨 80 h 制备的储氢材料进行形 貌观察。相转变分数为实际的吸放氢量(H/M)与理 论储氢量(7.6%,质量分数)的比值,是吸放氢过程 进程的标志。 表1 试验用原材料

Table 1 Raw materials used in	n experiments
---------------------------------------	---------------

Raw material	Purity/%	Specification	Manufacturer
Mg	>99	0.075–0.150 mm	Shanghai Reagent Company
Ni	>99	20 nm	Shenzhen Reagent Company
MnO ₂	>99	0.075–0.150 mm	Shanghai Reagent Company

2 结果与讨论

2.1 Mg-3Ni-2MnO2储氢材料的吸放氢动力学性能

图 2 所示为制备的 Mg-3Ni-2MnO₂ 储氢材料的 SEM 像。由图 2 可知,其平均颗粒尺寸小于 2 µm。 在 2.5 MPa、150℃~200 ℃温度范围内该储氢材料的 吸氢相转变动力学曲线如图 3 所示。由图 3 可知, Mg-3Ni-2MnO₂ 储氢材料具有良好的吸氢动力学性 能,吸氢过程的最大相转变分数为 0.82,即最大吸氢 量为 6.23%(质量分数)。吸氢温度对相转变速度有影 响,在选定的温度范围内,初始吸氢温度越高,越有 利于吸氢。张文丛等^[14]利用 J-M-A 方程建立了该配方 储氢材料的本征吸放氢动力学方程并进行了数值模

图1 吸放氢测试装置示意图

Fig.1 Schematic diagram of apparatus for measuring hydrogenation and dehydrogenation dynamics of metal hydride: 1, 2, 3, 5, 6, 10, 12, 13, 14—Valves; 4—Hydrogen storage container; 7—Pressure gauge; 8—Reactor and heater; 9—Pressure sensor; 11—Vacuum meter; 15—Bellows sealed value; 8—Equilibrium container; 17—Measure cylinder; 18—Displacement sensor; 19—Computer digital record system; 20—Cooling pipe

图 2 Mg-3Ni-2MnO₂的 SEM 像

Fig.2 SEM image of Mg-3Ni-2MnO₂

图 3 不同温度下 Mg-3Ni-2MnO₂储氢材料吸氢过程的相转 变动力学曲线

Fig.3 Phase transformation kinetics curves of Mg-3Ni-2MnO₂ hydrogen storage materials under different temperatures during hydrogenation process

拟,模拟结果表明,Mg-3Ni-2MnO₂储氢材料吸氢过 程存在一个临界吸氢温度,临界温度以下吸氢时,温 度越高,吸氢动力学性能越优异;而在临界温度以上 时,吸氢温度越高,则吸氢速度越慢。本文作者从实 验的角度部分验证了该结论的合理性。

图 4 所示为 Mg-3Ni-2MnO₂ 储氢材料在 0.1 MPa、 不同温度条件下放氢相转变动力学曲线。由图 4 可知, 储氢材料同样具有良好的放氢动力学曲线,温度对放 氢动力学曲线有影响,其基本规律为:放氢温度越高, 放氢动力学性能越优异。该储氢材料放氢过程最终的 相转变分数约为 0.8。

图 4 不同温度下 Mg-3Ni-2MnO₂储氢材料放氢相转变动力 学曲线

Fig.4 Phase transformation kinetics curves of Mg-3Ni-2MnO₂ hydrogen storage materials at different temperatures during dehydrogenation process

Mg-3Ni-2MnO₂ 储氢材料吸氢过程相转变行为 特征

储氢材料吸氢过程是 MgH₂的形核、长大过程,研究晶体形核长大动力学性能,较传统的方法是利用 Johnson-Mehl-Avrami 公式:

$$F = 1 - \exp(-kt^{\eta}) \tag{1}$$

式中 *F* 为相转变分数; *k* 为速率常数,与温度和压 力有关; *t* 为相变时间; *η* 为 Avrami 指数,指数的数 值反映材料相变行为的特征,通过对 J-M-A 方程进行 合理的变形处理可求解 Avrami 指数。

图 5 所示为根据图 3 所示的储氢材料吸氢动力学 曲线,按照 J-M-A 方程进行数学处理所获得的 lnln[1/(1-F)]—lnt 关系曲线。通常情况下认为:金属 储氢材料粉体的吸氢过程包括表面过程(氢气在颗粒 表面的化学吸附、分解并形核)、扩散过程(MgH₂形成 后氢原子在形成的 MgH₂相中的扩散)和界面反应过程 (氢原子从β相进入α相)。在吸氢初始阶段,相转变 速率较大(见图 3),而由图 5 可知,该阶段的 Avrami 指数在 1.0~1.5 范围内变化,结合储氢材料颗粒尺寸 较小、表面积大的特点,可以认为此时表面效应发挥 重要作用。而后的整个阶段,其 Avrami 指数约为 0.5, 表明己形成的新相不断增厚^[15]。

图 6 所示为 Mg-3Ni-2MnO₂ 储氢材料不同吸氢温 度下的 lnln[1/(1-F)]—lnt 曲线。由图 6 可知,不同温

图 5 在 2.5 MPa 和 200 ℃条件下 Mg-3Ni-2MnO₂ 储氢材料的 lnln[1/(1-F)]—lnt 曲线

Fig.5 Curve of $\ln\ln[1/(1-F)]$ —lnt for Mg-3Ni-2MnO₂ hydrogen storage materials under conditions of 2.5 MPa and 200 °C

图 6 在不同温度下 Mg-3Ni-2MnO₂ 储氢材料吸氢过程的 lnln[1/(1-F)]—lnt 曲线

Fig.6 Curves of lnln[1/(1-F)-lnt for Mg-3Ni-2MnO₂ hydrogen storage materials under different temperatures during hydrogenation process

度下储氢材料吸氢的 lnln[1/(1-F)]—lnt 曲线近似平 行,曲线斜率相同,即 Avrami 指数相同,这说明在不 同温度下吸氢,储氢材料有着相似的相转变行为规律, 温度变化只改变吸氢过程的相转变速率。

2.3 Mg-3Ni-2MnO₂ 储氢材料放氢过程相转变行为 特征

放氢过程是 Mg 的形核、长大过程。图 7 所示为 根据图 4 中氢化态储氢材料在 300 ℃、0.1 MPa 条件

图7 在 300 ℃和 0.1 MPa 条件下 Mg-3Ni-2MnO₂ 储氢材料的 lnln[1/(1-F)]—lnt 曲线

Fig.7 Curve of $\ln\ln[1/(1-F)]$ —lnt for Mg-3Ni-2MnO₂ hydrogen storage materials under conditions of 300 °C and 0.1 MPa

下放氢相转变动力学曲线按照 J-M-A 方程进行合理的 数学处理所获得的 lnln[1/(1-F)]—lnt 曲线。由图 7 可 知,曲线并非是一条直线,考虑到放氢过程所需时间 相对较长,为了准确描述 Mg-3Ni-2MnO₂ 材料放氢过 程相转变的基本规律,本文作者引入了区域 Avrami 指数 η 的概念。

图 8 所示为氢化态储氢材料在 300 ℃放氢时的 区域 Avrami 指数变化曲线。由图 8 可知,在相变初始 阶段,即相转变分数小于 0.1 时,区域 Avrami 指数由 较小值很快达到 2.0,因此,此阶段是镁的形核以及晶 核长大的过程,由图 4 可知,该阶段所用的时间约为

图 8 Mg-3Ni-2MnO₂储氢材料 300 ℃等温放氢过程的区域 Avrami 指数

Fig.8 Local Avrami exponent of Mg-3Ni $-2MnO_2$ hydrogen storage materials during isothermal dehydrogenation process at 300 °C

70 s。随着相转变的进行, 区域 Avrami 指数开始降低, 当相转变分数为 0.3 时,其值为 1.5,这个阶段仍为新 相的长大过程。在随后的阶段,考虑误差因素的影响, 此时的储氢材料区域 Avrami 指数基本保持在 1.5 左 右,该阶段的相转变分数处于 0.3~0.75 范围内,主要 发生已有晶核的稳定长大,没有新的晶核形成。其放 氢相转变行为如表 2 所列。

表 2 氢化态 Mg-3Ni-2MnO₂ 储氢材料放氢相转变行为 **Table 2** Phase transformation behavior of hydrided Mg-3Ni-2MnO₂ during dehydrogenation process

Phase transformation fraction	Local Avrami index	Character of phase transformation
0-0.1	0.7-2.0	Formation of Mg crystal nucleus, nucleation rate becomes little
0.1-0.3	1.5-2.0	Mg phase still grows, nucleation rate becomes zero
0.3-0.75	1.5	Stable growth of new phase

图 9 所示为不同温度下氢化态 Mg-3Ni-2MnO₂材 料放氢过程的 lnln[1/(1-F)]—lnt 曲线。由图 9 可知, 氢 化 态 储 氢 材 料 在 不 同 温 度 下 放 氢 时 , 其 lnln[1/(1-F)]—lnt 曲线形状在反应的大多数时间内基 本相似,即曲线斜率近似一致,这说明温度对储氢材 料放氢过程相转变影响也不大,只对其相转变速率有 影响。

图 9 在不同温度下氢化态 Mg-3Ni-2MnO₂ 储氢材料放氢过程的 lnln[1/(1-F)]—lnt 曲线

Fig.9 Curves of lnln[1/(1-F)]—lnt for Mg-3Ni-2MnO₂ hydrogen storage materials at different temperatures during dehydrogenation process

3 结论

 在所研究的温度范围内,温度越高,越有利于 提高 Mg-3Ni-2MnO₂ 储氢复合材料吸放氢速度,其吸 放氢相转变动力学性能越优异。

2) 在 150~200 ℃范围内吸氢时,储氢材料 Avrami数值由初始阶段的 1.0~1.5 很快变为 0.5 左右, 即储氢材料很快进入己形成相的增厚阶段;在 150 ℃~ 200 ℃范围内,温度变化对其吸氢相转变行为影响不 大,而对相转变速率有影响。

3) Mg-3Ni-2MnO₂ 储氢材料放氢过程中,Avrami 指数数值随反应分数的变化而不同,根据数值的变化 范围,其放氢过程的相转变阶段分为:形核长大阶段、 新相稳定长大阶段(无新的晶核形成);温度变化同样对 放氢相转变速率有影响,而对其相转变影响不大。

REFERENCES

- 柳东明,巴志新,李李泉. 镁基储氢合金制备新方法—氢化 燃烧合成法[J]. 粉末冶金技术,2005,23(3):224-228.
 LIU Dong-ming, BA Zhi-xin, LI Li-quan. Effect and using of magnesium hydriding reaction in hydriding combustion synthesis of Mg₂NiH₄[J]. Powder Metallurgy Technology, 2005, 23(3): 224-228.
- [2] 房文斌,张文丛,于振兴,王尔德. 镁基储氢材料研究进展[J]. 中国有色金属学报,2002,12(5):853-862.
 FANG Wen-bin, ZHANG Wen-cong, YU Zheng-xing, WANG Er-de. Recent development of Mg-based hydrogen storage material[J]. The Chinese Journal of Nonferrous Metals, 2002, 12(5):853-862.
- [3] LI Chuan-jian, WANG Xin-lin. Investigations on the cycle stability and the structure of the MmNi3.6Co0.75Mn 0.55Al0.1 hydrogen storage alloy(I). Measurements and analysis of the cycle stability and the phase structure[J]. Journal of Alloys and Compounds, 1999, 284: 270–273.
- [4] LI Li-quan, AKIYAMA T, YAGI J I, Hydrogen storage alloy of Mg₂NiH₄ hydride produced by hydriding combustion synthesis from powder of mixture metal[J]. Journal of Alloys and Compounds, 2000, 308: 98–103.
- [5] 赵显久,李 谦,林根文,周国治,张捷宇,鲁雄刚. Mg-Mg₂Ni_{1-x}Me_x 的氢化反应动力学[J].中国有色金属学报, 2008,18(5):973-978.

ZHAO Xian-jiu, LI Qian, LIN Gen-wen, ZHOU Guo-zhi, ZHANG Jie-yu, LU Xiong-gang. Hydriding reaction kinetics of Mg-Mg₂Ni_{1-x}Me_x compositions[J]. The Chinese Journal of Nonferrous Metals, 2008, 18(5): 973–978.

- [6] OELERICH W, KLASSEN T, BORMANN R. Metal oxide as catalysts for improved hydrogen sorption in nanocrystalline Mg-based material[J]. Journal of Alloys and Compounds, 2001, 315: 237–233.
- [7] 李法兵, 蒋利军. 机械合金化直接合成镁基复合储氢材料研究[J]. 稀有金属材料与工程, 2005, 34(5): 750-753.
 LI Fa-bing, JIANG Li-jun. Research for direct synthesis of Mg-Based hydrogen storage composite material[J]. Rare Metal Materials and Engineering, 2005, 34(5): 750-753.
- [8] YU Zhen-xing, LIU Zu-yan, WANG Er-de. Hydrogen storage properties of the Mg-Ni-CrCl₃ nanocomposite[J]. Journal of Alloys and Compounds. 2002, 333: 207–211.
- [9] ZALUS K L, ZALUSKA A, TESSIER P. Catalytic effect of Pd on hydrogen absorption in mechanically alloyed Mg₂Ni, LaNi₅ and FeTi [J]. Journal of Alloys and Compound, 1995, 217(2): 295–300.
- [10] 朱文辉,高 岩,朱 敏. 镁含量对MmNi_{5-x}(CoAlMn)_x/Mg复合储氢合金吸氢性能影响[J]. 材料工程, 2000, 5: 9-11. ZHU Wen-hui, GAO Yan, ZHU Min. The influence of Mg content on the hydrogen absorption properties of MmNi_(5-x) (CoAlMn)_x/Mg nanocrystalline composite[J]. Journal of Material Engineering, 2000, 5: 9-11.
- [11] WANG Er-de, YU Zheng-xing, LIU Zu-yan. Hydrogen storage

properties of nano-composite Mg-Ni-MnO₂(wt%) made by mechanically milling[J]. Trans Nonferrous Met Soc China, 2002, 12(2): 227–232.

- [12] ZALUSKA A, ZALUSKA L, STROM-OLSEN J O. Nanocrystalline magnesium for hydrogen storage[J]. Journal of Alloys and Compound, 1999, 288(1/2): 217–225.
- [13] LIANG G, HUOT J, BOILY S, van NESTE A, SCHULZ R. Hydrogen storage properties of the mechanically milled MgH₂-V nanocomposite[J]. Journal of Alloys and Compounds, 1999, 291: 295–301.
- [14] 张文丛, 刘鲁生, 王召友, 王尔德. Mg-3Ni-2MnO₂ 储氢材料 本征吸放氢动力学性能研究[J]. 稀有金属材料与工程, 2007, 36(2): 226-230.

ZHANG Wen-cong, LIU Lu-sheng, WANG Zhao-you, WANG Er-de. Numerical simulation of intrinsic absorption and desorption kinetics for Mg-3Ni-2MnO₂ hydrogen storage materials[J]. Rare Metal Materials and Engineering, 2007, 36(2): 226–230.

[15] 徐祖耀. 相变原理[M]. 北京: 科学出版社, 2000.
 XU Zu-yao. Phase transformation theory[M]. Beijing: Science Press, 2000.

(编辑 李向群)