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Abstract: The selection law of deformation twinning variants at elevated temperature in Mg-Gd-Y-Zr alloy was
investigated. The microstructures containing deformation twins were prepared by compressing as-cast Mg-Gd-Y-Zr alloy
at 350 C and low true strain of 0.05. The observed {1012} twins were characterized by electron backscatter
diffractometry (EBSD) and transmission electron microscopy (TEM). Comparison between EBSD analysis and
theoretical calculation was conducted to identify the twinning variants. Two methods, Schmid factor and Taylor criterion,
were used to analyze the law for occurrence of twinning variants. The results reveal that Schmid factor fails to predict the
activated twinning variants, while Taylor criterion allows the experimental observations to be readily predicted
considering {1012 } twins, basal slip and non-basal slips. For Mg-Re alloy, deformation twinning at elevated temperature
is still necessary to accommodate the plastic strain along with dislocation slip.
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Table 1 Six {1012} TVs and three TV pairs

Twin transformation

Twinning variant matrix (Eular angle) TV pair
TVI  (1102)[1101]  (240°, 86.4°, 120°)
TV2  (1102)[1101]  (60°, 86.4°,300°) :
TV3  (1012)[1011] (3007, 86.4°, 60°)
TV4  (1012)[1011] (1207, 86.4°, 240°) f
TV5  (0112)[0111]  (180°, 86.4°, 180°) -

TV6  (0112)[0111] 0°, 86.4°, 0°)
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Fig.1 Orientation image maps of Mg alloy compressed at

350 C and 0.01/s (Vertical is compressive direction)
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Fig.2 Orientation image maps of two grains partly twinned:
(a) T1 and T2 twinned from matrix M1; (b) T3 and T4 twinned

from matrix M2
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Fig.3 TEM bright-field morphologies and SAD patterns of
dislocation slip on (0110) plane (a) and {1012} twin

boundaries on (21 10 ) plane (b)
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Table 2 Schmid factors of all TVs and slip in double{ 1012 }twinning grains
Mattix orientation SF of six {1012} TV Basal  Prismatic {1011} {1121}
TV pair | TV pair 11 TV pair 1II slip slip slip slip
M1(10°, 78.8°%, 20°) 0.450 0.472 0.160 0.174 0.051 0.059 0.155 0.470 0.227 0.433
M2(2.8°, 85°,130%) 0.015 0.014 0.443 0.437 0.286 0.291 0.048 0.492 0.419 0.202
M3(12.7°,79.3°, 141°)  0.060 0.043 0.442 0.405 0.099 0.120 0.193 0.433 0.320 0.187
M4(179.5°,75°,220°)  0.483 0.484 0.057 0.057 0.207 0.208 0.006 0.493 0.432 0.366
M5(182°,69°,214.7°)  0.495 0.490 0.085 0.083 0.170 0.167 0.034 0.473 0.433 0.392
M6(344°,168°,354°)  0.439 0.432 0.296 0.290 0.012 0.014 0.056 0.415 0.277 0.354
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Fig.5 Contours of SF,,, for various deformation systems: (a)

{1012 }TVs, basal slip and prismatic slip; (b) ¢+4a slip
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Table 3 Distribution of shears among different systems for initial orientations under uniaxial compression

{1012} twinning

. . . Basal Prismatic ~ _ _ .
Matrix orientation i li ¢ +aslip
TV pair | TV pair I TV pair Il P SHp
M1(10°, 78.8°, 20°%) 0.034 0.050 7 0 0 0 0 0.026 0 0.009 0 0.003 6
o oo . 0.0140
M2(2.8°%, 85°,130°) 0 0 0 0.056 0.043 4 0 0.004 0 0.026 0 0
. . o 0.003 0
M3(16.1°, 76.6°, 142°) 0 0 0.067 0.014 0 0 0.052 0 0.004 0 0
0.024 0
M4(179.5°, 75°, 220°) 0.074 0 0 0 0 0.018 8 0.0200 0
0.000 1
e Zo° . 0.030 0
M5(182°, 69°, 214.7°) 0.051 0.036 0 0 0 0 0 0.005 0 0.0190 0
M6(344°, 168°, 354°) 0.004 0.043 0 0 0 0 0 0.024 0 0.020 7 0.095 7
Shear calculates by full-constraint Taylor criterion according to Towinning - Tbasal - T prismatic - 6+4 =2:1:2:4.
tH, 1 CRSS i Hﬁ{Ej‘J Ttwinning * basal - Tprismatic - ‘c+a — close-packed metals[J]. Metall Mater Trans A, 1981, 12:
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