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Hot compressive deformation simulation of
rheo cast AZ31B magnesium alloy
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Abstract: The billet of magnesium alloy AZ31B was prepared by the method of twimrscrew rheo-casting and normal
casting. The hot compression of these two kinds of samples at 250 =400 C was performed on Gleeble = 3000 hot
simulator with the strain rates of 0.001 =55~ ', and the maximum deformation of 60% . The relationship among the
stress, deformation temperature and strain rate were analyzed and compared. The results show that the deformation
of rheo-casting billet is more uniform than that of the normal casting in the compression process, so the rheo-cast
billet can be hot deformed directly. The maximum stress of rheo-casting is less than that of the normal casting at
above 350 C, which means that the billet made by rheo-casting can be deformed easier than normal casting. The
reason of the difference is that the microstructure of rheo-casting is composed of uniform, tiny and equalaxial

grains; while the microstructure of normal casting is coarse dendrite.
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Table 1 Chemical composition of

alloy (mass fraction, %)

Al Zn Mn Be Ca
2.56 0.77 0.34 < 0.001 < 0.002
Si Fe Ni Cu Mg

0.016 < 0.002 0. 001 0. 003 Bal.
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Fig. 1 Microstructures of as-cast AZ31B alloy
(a) —Normal casting( NC);
(b) —Twin-screw rheocasting( RC)
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Fig. 2 Model of hot compression
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Fig. 4 Relationship between true strain and true stress for

NC sample at different temperatures and strain rates
(8) =250 C; (b) —300 C; () —350 C; (d) —400 C
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Fig. 5 Relationship between true strain and true stress for

RC sample at different temperatures and strain rates
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