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Cavity evolution behavior of twin-roll-cast AZ31 alloy sheet during
hot deformation
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Abstract: The cavity evolution behavior of twin-roll-cast AZ31 magnesium alloy sheet during hot deformation was
investigated by in-situ SEM observation on the fatigue testing machine, and the characteristics of cavity were quantitative
measured using graphical analysis software. The results show that the cavity nucleates while the twin-roll-cast AZ31
alloy sheet deforms, and the cavity starts on the tri-grain boundary. The continuously growth and coalescence of the
cavities induce the material fracture. The cavities grow directionally and prefer to grow along axis perpendicular to the
loading axis. The comparison between the theory analysis and experimental results shows that the shape of the cavity
with diameter less than 2 um is nearly spherical, and the main cavity growth mechanisms is diffusion. In contrast, the
cavities with diameter larger than 2 pum tend to be elongated with the long axis parallel to the loading axis, the main
cavity growth mechanisms is plasticity deformation.
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Fig.1 Initial microstructure of twin-roll-cast AZ31 alloy sheet
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Fig.2 In-situ SEM observation of cavity deformed at 250 ‘C and 4X10™*s™' (vertical stretching): (a) £=0.2; (b) £=0.3; (c) £=0.4;

(d) e=0.55
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Fig.3 SEM micrographs showing rolling plane of specimen
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Fig.4 Size distribution of cavity under various deformation conditions: (a) Distribution of area; (b) Distribution of nominal
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