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Form and refinement mechanism of
element Er in AFZir Mg alloy
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Abstract: AF6Zn-2Mg alloys containing different contents of Er were prepared by steel mould casting. The form of Er
in AF6Zr2M g alloy and its refinement mechanism were studied with OM, SEM, TEM and EDS. T he results show that
Er exists in three forms: resolved in a( Al) based solid solution, forming primary phase ALEr or eutectic compound in
grain boundary, precipitated in the form of the fine AlzEr particles. The addition of Er can be capable of refining grain to
a certain degree: the dendritical arm space of the alloy containing less than 0.25% Er becomes small, however the grain
seldom keeps the same size. The effect of grain refinement becomes remarkably great when containing up to 0. 4% Er.
The grain becomes rather fine when the content of Er is more than 0. 4% . The refinement mechanism of Er addition de-
pends on the content of Er. The refinement mechanism of the alloy containing less Er conforms to the traditional theory
for rare-earth aluminum alloy. The grain of the alloy containing more Er is refined because of the formation of primary

ALEr, and the primary Alz3Er can act as heterogeneous nucleus.
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Table 1 Chemical composition of

alloys( mass fraction, %)

Alloy Mg Zn Er Al

AF6Zr20M g .78 5.28 0 Bal.
AF6Zir 2M g 0. 10Er .92 5.73 0.09 Bal.
AF6Zir 2M g 0. 25Er . 86 5.16 0.24 Bal.
AF6Zir 2M g 0. 40Er .71 5.65 0.37 Bal.
AF6Zir 2M g 0. 55Er .93 5.70 0.53 Bal.
AF6Zir 2M g 0. 70Er s 15 5.30 0. 62 Bal.
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Fig. 1 Optical micrographs of as cast alloys
(a) —AFZmrMg; (b) —AFZirMg0. 1Er; (¢) —AFZn-Mg0. 25Er;
(d) —AFZrrMg0.4Er; (e) —AFZirMg0.55Er; (f) —AFZirMg0. 7Er
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Fig.2 X-ray diffraction patterns of

ascast alloys
(a) —AFZirMg; (b) —AFZirMg0.4Er
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Fig. 3 Optical micrographs of ascast

alloys corroded by 0. 5% HF
(a) —AFZn-Mg; (b) —AFZn-Mg-0.4Er

2.3 441 TEM W& 500

K5 s AFZr Mg 0. 4Er 75 & & B S
M2, A WAE S R e R & (B 5
(a)), AEIEAMTRARXMIUEYEH ALS Er 2 5
JCHE (K 5(b)), AT, #E ek a(Al+
ALEr 3t b & 0. K 6(a) I AFZrMg-0. 1Er &



F14EH 48

WMEZE, % FHHAE AYZrMg & &P RFEAERR S @by e . 623 °

EfkeV

Kl 4 4% AZorMg0.4Er 545 —H
Fig. 4 Second phase of as cast

AFZo-M g 0. 4Er alloy

(a) —SEM photograph of as cast AFZn-M g-0. 4Er alloy;
(b) —EDS of second phase
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Fig. 5 TEM micrograph and EDS of
as-cast AFZnrMg-0. 4Er alloy

(a) —Coarse compound in grain boundary;

(b) —EDS of compound
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Fig. 6 SADP of Al matrix and fine particle

of AFZnrMg-0. 1Er alloy

(a) —Fine particles in grain of AFZn-Mg-0. 1Er alloy;
(b) —SADP of Al matrix and fine particle
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