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Abstract: A machine learning (ML) method aided by domain knowledge was proposed to predict saturated 
magnetization (Bs) and critical diameter (Dmax) of soft magnetic metallic glasses (MGs). Two datasets were established 
based on published experimental works about soft magnetic MGs. A general feature space was proposed and proven to 
be adaptive for ML model training for different prediction tasks. It was demonstrated that the predictive performance of 
ML models was better than that of traditional knowledge-based estimation methods. In addition, domain knowledge 
aided feature design can greatly reduce the number of features without significantly reducing the prediction accuracy. 
Finally, the binary classification of Dmax of soft magnetic MGs was studied. 
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1 Introduction 
 

Soft magnetic metallic glasses (MGs) have 
attracted considerable attention due to their unique 
combination of excellent mechanical and magnetic 
properties [1]. Due to the amorphous structure, soft 
magnetic MGs usually do not have magnetic 
anisotropy and grain boundaries, which make them 
exhibit excellent soft magnetic properties, i.e.,  
high permeability and saturated magnetization (Bs) 
and low coercivity. For the functional engineering 
application of soft magnetic MGs, the main goal is 
to improve Bs. Bs is an intrinsic property of 
magnetic materials, which refers to the maximum 
flux density that can be achieved. In general, MGs 
with high Bs value have a high content of 
ferromagnetic elements, for example, 1.75 T for 
Fe86B7C7 ribbon [2], 1.82 T for (Fe0.8Co0.2)87B7Si3P3 

ribbon [3], 1.9 T for (Fe0.8Co0.2)85B14Si1 ribbon [4], 
1.51 T for Fe76Si9B10P5 rod with a critical diameter 
(Dmax) of 2.5 mm [5], and 1.61 T for Fe75.3C7Si3.3- 
B5P8.7Cu0.7 rod with a Dmax of 1.5 mm [6]. Dmax is 
the diameter of the largest amorphous rod that    
an alloying composition can form. It is an 
experimental parameter that could be easily 
obtained and is often used to quantify glass forming 
ability (GFA) of MGs. Though ~5000 MG 
compositions have been developed [7], most of 
them were in a ribbon form and showed too limited 
GFA to form bulk MGs with large geometric size. 
Therefore, understanding Bs and Dmax of soft 
magnetic MGs is an important research topic, and 
prediction of the two properties is of great 
significance for the design of high performance soft 
magnetic MGs. 

In the past few years, machine learning (ML) 
has been applied to material science to predict the  
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material properties or behaviors [8−10]. GFA and 
magnetic properties of alloys also have been studied 
by ML methods, which can be divided into 
classification and regression. For classification,  
ML models based on backpropagation neural 
network [11], support vector machine [12], general 
and transferable deep learning framework [13], etc., 
were trained to identify MGs and non-MGs classes. 
For regression analysis, ML models were trained  
to predict the specific Dmax value of MGs [14,15] 
and the Bs value of MGs [16] and nanocrystalline  
alloys [17]. 

In this work, a ML method aided by domain 
knowledge was proposed to predict Bs and Dmax of 
soft magnetic MGs based on alloying compositions. 
Two datasets were established based on previous 
work. ML models were trained based on five ML 
algorithms, and their predictive performance was 
compared. A general feature space was proposed  
for the prediction of the two properties, and  
feature design based on domain knowledge     
was conducted. By comparing the predictive 
performance of ML models before and after feature 
selection, the effect of domain knowledge in the 
ML method was highlighted. 
 
2 Methodology 
 
2.1 Dataset description 

The two datasets were deduced from previous 
work. A data entry in the datasets contains 
information about the chemical compositions and 
the experimental values of target properties, i.e., Bs 
and Dmax. The saturated magnetization dataset 
(hereinafter referred to as BS Dataset) contains 
639 alloying compositions, most of them were 
taken from a previous related work [18], and    
the rest were collected from other published 
literature [19−23]. Since the mean magnetic 
moment of iron is larger than that of cobalt and 
nickel, and the cost of production of the former is 
lower than the latter, Fe-based MGs become the 
mainstream in soft magnetic MGs. The critical 
casting diameter dataset (hereinafter referred     
to as DMAX Dataset) contains 519 alloying 
compositions, which were selected from two 
previous related works [14,24]. The literature [24] 
provided a Fe-based bulk MGs dataset containing 
480 alloying compositions with experimental Dmax 
values. Another literature [14] provided a bulk MGs 

dataset containing 7950 alloying compositions with 
experimental Dmax values, out of which 139 are 
Fe-based bulk MGs. The Dmax values of the same 
alloying composition reported in different works 
may be different, and in this case, the average value 
was adopted. 

Figures 1(a, b) show the value distribution of 
Bs and Dmax, respectively. The value of Bs in the 
dataset ranges from 0.05 to 1.92 T with a median of 
1.5 T and an average of 1.19 T, which shows the 
excellent magnetic property of MGs. The value of 
Dmax in the dataset ranges from 0.06 to 18.00 mm 
with a median of 2.50 mm and an average of 
3.04 mm. The Dmax data are sparsely distributed in 
the interval greater than 7 mm, which indicates  
that improving GFA of MGs is still challenging. 
Figures 1(c, d) show the distribution of chemical 
elements in the two datasets. There are 33 and   
29 kinds of chemical elements in BS Dataset    
and DMAX Dataset, respectively, and ~95% of     
the alloying compositions contain Fe and B. As 
mentioned before, Fe is the main ferromagnetic 
element used in soft magnetic MGs. Proper addition 
of boron could enhance GFA of Fe-based MGs 
without excessively negative effect on the magnetic 
properties [25]. Figures 1(c, d) also indicate that a  
lot of chemical elements could be used for the 
preparation of soft magnetic MGs. Therefore, an 
effective properties prediction method is of great 
significance for the development of new soft 
magnetic MGs. 

In general, soft magnetic alloys can be easily 
magnetized and demagnetized, which is usually 
identified by whether the values of their intrinsic 
coercivity (Hc) are less than 1 kA/m. A scatter plot 
of the values of Bs versus Hc of the alloying 
compositions in BS Dataset is shown in Fig. 2(a), 
which indicates that they exhibit typical soft 
magnetic property. Most of the alloying 
compositions have a Hc value even lower than 
50 A/m. There are 130 alloying compositions with 
both Bs and Dmax values. As shown in Fig. 2(b), Bs 
and Dmax values of these alloying compositions 
show a weak negative correlation. Their Pearson 
correlation coefficient was calculated to be −0.10, 
which confirms the negative correlation. The 
calculation method of Pearson correlation coefficient 
could be found in the previous work [18]. Therefore, 
in general, Bs and Dmax values of Fe-based MGs are 
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Fig. 1 Distribution of Bs (a), Dmax (b), and chemical elements in BS Dataset (c) and DMAX Dataset (d) 
 

 
Fig. 2 Scatter plots of Bs versus Hc (a) and Dmax versus Bs (b) 
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incompatible with each other to some extent. 
Understanding and modeling the two properties 
could help to design high performance soft 
magnetic MGs. 
 
2.2 General feature space 

Feature space is a combination of some 
measurable parameters used to describe the input, 
which is alloying composition in this work, of ML 
models. For designing new functional alloys with 
desired properties, it is more practical not to  
involve any parameters about synthesis process or 
experimental measurements. Therefore, the features 
used in this work to describe soft magnetic MGs 
compositions were all only based on chemical 
compositions and elemental properties. A general 
feature space was proposed to conduct ML model 
training and prediction of both Bs and Dmax. Apart 
from the feature candidates used in the previous 
work [18], including elements and molar fraction 
(c), theoretical density (ρ), mean metallic atomic 
radius [26] (Rm), atomic size difference (δR), 
theoretical molar volume [27] (Vm), melting 
temperature calculated by the rule of mixtures (Tm), 
Pauling electronegativity [26] (χ), valence electron 
concentration [28] (VEC) and mixing entropy [29] 
(ΔSmix), more feature candidates were involved   
in this work, including mixing enthalpy [30] 
(ΔHmix), mixing Gibbs free energy [14] (ΔGmix), 
Pauling electronegativity difference (δχ), relative 
Pauling electronegativity (Rχ), valence electron 
concentration difference (δVEC), relative valence 
electron concentration (RVEC), work function [31] 
(W) and work function difference (δW), as given in 
Table 1. All the feature candidates in the general 
feature space can be divided into four classes 
related to chemical components, atomic structures, 
thermo-dynamics and electronic properties. The 
feature candidates related to atomic structures, 
thermodynamics and electronic properties mainly 
describe the molar fraction weighted average and 
mismatch of the elemental properties in alloying 
compositions by  
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where n is the total number of chemical elements in 
an alloying composition, and ci and pi are the molar  

Table 1 General feature space used for ML model 
training and prediction 

Feature class Description 
Chemical 

composition Molar fraction of chemical elements (c)

Related to  
atomic  

structures 

Theoretical density (ρ) 

Mean metallic atomic radius (Rm) 

Atomic size difference (δR) 

Theoretical molar volume (Vm) 

Related to 
thermodynamics

Mixing entropy (ΔSmix) 

Mixing enthalpy (ΔHmix) 

Mixing Gibbs free energy (ΔGmix) 
Melting temperature calculated by 

 rule of mixtures (Tm) 

Related to  
electronic  
properties 

Pauling electronegativity (χ) 

Pauling electronegativity difference (δχ)

Relative Pauling electronegativity (Rχ)

Valence electron concentration (VEC)
Valence electron concentration 

difference (δVEC) 
Relative valence electron  

concentration (RVEC) 
Work function (W) 

Work function difference (δW) 

 
fraction and elemental properties of the i-th element, 
respectively. In addition, ΔSmix, ΔHmix, ΔGmix, Rχ 
and RVEC are calculated by  
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where χi and VECi are the electronegativity and 
valence electron concentration of the i-th element, 
respectively, and cj is the molar fraction of the j-th 
element. R is the molar gas constant, and mix

ABHΔ  
is the mixing enthalpy of the liquid binary alloy 
containing the i-th and the j-th elements. χFe=1.83, 
χCo=1.88, χNi=1.91, χGd=1.2, VECFe=8, VECCo=9, 
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VECNi=10 and VECGd=3. 
 
2.3 Knowledge-based feature design 

The general feature space contained as much 
information as possible to be applicable to different 
prediction tasks. Although the theoretically 
calculated features have contained domain 
knowledge, too many features might hide the 
physical mechanism dominating the target 
properties, and redundant information also had a 
negative impact on the predictive performance of 
ML models. Therefore, feature selection was 
conducted. First, several prevalent feature selection 
methods from machine learning community were 
used to reduce the number of features for Bs and 
Dmax prediction without significant loss of accuracy. 
Then, a knowledge-based feature was added to 
improve the predictive performance of ML models. 
In the first feature selection process, three feature 
selection algorithms were used, namely univariate 
feature selection [32], feature importance given by 
light gradient boosting machine (LightGBM) [33] 
and recursive feature elimination (RFE) [34], which 
were denoted as M1, M2 and M3, respectively. 
Univariate feature selection can figure out the 
features having the strongest relationship with the 
target variable by statistical tests. The statistical test 
used in this work is the analysis of variance with 
the F-test [32]. LightGBM is a decision tree-based 
algorithm, which could produce feature importance 
by traversing each node of the established trees 
with a criterion. RFE recursively removes 
unimportant features suggested by ML models and 
trains a new ML model using the remaining features 
in the feature list. The ML algorithm used for 
producing feature importance in RFE is also 
LightGBM. The first feature selection procedure  
is mainly based on the principle of statistical 
analysis, which is data-sensitive. In addition, many 
researchers have studied magnetic properties and 
GFA of MGs from a material science point of view, 
which can be used to guide feature design. For 
example, according to the theories in magnetism, Bs 
is proportional to the mean magnetic moment of all 
the atoms in an alloy [35], which is described by  

A B
s

m

N μμB
V

=                             (8) 
 
where NA is Avogadro constant, μ  is the mean 
magnetic moment of the alloy, and μB is Bohr 
magneton. Furthermore, since the 1930s, some 

theoretical estimation methods for the mean 
magnetic moment of an alloy have been 
continuously developed [36]. Recently, based on 
free electron transfer theory, an estimation method 
of μ  was proposed for Fe-based alloys using the 
chemical compositions [35]. Inspired by that work, 
the estimated μ  is selected as a feature. 
 
2.4 Machine learning algorithms 

Kinds of ML algorithms have been 
successfully applied to solving material science 
problems, but there is no universal ML algorithm. 
Therefore, it is necessary to choose a suitable   
ML algorithm and implement hyperparameters 
optimization for good predictive performance in 
different problems. Five ML algorithms were 
selected to address the problem of Bs and Dmax 
prediction in this work, namely support vector 
regression (SVR) [37], multilayer perceptron  
(MLP) [37], random forest (RF) [38], extreme 
gradient boosting (XGBoost) [39] and LightGBM. 
Their predictive performance was evaluated by 
10-fold cross-validation [40], which is a prevalent 
method to objectively evaluate the predictive 
performance of ML models when the dataset size is 
limited. The evaluation metric used in cross- 
validation was root mean squared error (RMSE) 
calculated by  

( ) ( )2
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where yi is the experimental value of Bs or Dmax, and 
ˆiy  is the predicted value of yi. The unit of RMSE is 

the same as the target variable, and the smaller the 
RMSE value, the better the predictive performance 
of the ML model. The final predictive performance 
was quantified by the average value of ten RMSE 
scores produced by 10-fold cross-validation, and 
the ML algorithm with the lowest RMSE value was 
suggested as the most suitable algorithm for Bs or 
Dmax prediction. In addition, to compare the 
prediction accuracy of the two target properties (Bs 
and Dmax) with different unit, another metric, 
namely determination coefficient (R2), was 
calculated by 
 

( ) ( ) ( )2 22
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ˆ, ˆ1

n n
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i i
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where y  is the average value of yi. 
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3 Results and discussion 
 
3.1 ML models trained with general feature 

space 
Based on the general feature space, the 

predictive performance of the five ML algorithms 
was evaluated via 10-fold cross-validation. The 
cross-validation results evaluated by RMSE and R2 
are shown in Fig. 3. It was found that XGBoost 
model outperformed others with the lowest RMSE 
and highest R2 for both Bs and Dmax prediction. 
Figure 3(b) showed that the prediction accuracy for 
Dmax was much lower than that for Bs. The reason 
could be that Dmax Dataset is scattered, and the data 
density is too large for the range of under 5 mm, 
which indicates that GFA of most reported MGs is 
limited. In addition, the experimental Dmax of MGs 
is measured by the injection casting method. The 
cooling rate of rods in copper mold casting is hard 
to keep uniform in different experiments. Therefore, 
the experimentally measured Dmax values could be 
fluctuated. The R2 values of Bs and Dmax prediction 
via XGBoost were ~0.93 and ~0.68, respectively, 
which were consistent with the recently reported 
results in MGs [16,18,24,41]. It should be noted 
 

 
Fig. 3 Cross-validation evaluated by RMSE (a) and R2

 (b) 
of different ML algorithms 

that all the ML models were trained based on the 
same feature space, i.e., the general feature space 
mentioned above. 
 
3.2 ML models trained with selected feature 

space 
Based on the general feature space, feature 

selection was conducted. In the first feature 
selection procedure, every feature selection strategy 
(M1, M2 and M3) was set to recommend 15 
features out of the general feature space. Then,  
ten features were finally selected based on the 
recommendations. The feature selection results for 
Bs and Dmax prediction are listed in Table 2. It 
should be noted that the finally selected ten features 
were not presented in any order of priority. 
 
Table 2 Feature selection for prediction of Bs and Dmax in 
soft magnetic MGs  
Target Method Recommended feature 

Bs 

M1 ΔGmix, Rχ, RVEC, ΔSmix, cFe, δVEC, 
cNb, δR, cNi, ΔHmix, cB, cDy, cCo, Tm, ρ

M2 Tm, ρ, χ, ΔGmix, ΔHmix, VEC, δVEC, W,
 Rm, ΔSmix, Vm, δχ, RVEC, Rχ, cFe 

M3 cFe, ρ, δR, Rχ, δVEC, RVEC, ΔSmix, Tm,
 ΔHmix, ΔGmix, VEC, δχ, Rm, Vm, χ 

Final cFe, ρ, δR, Rχ, δVEC, RVEC,  
ΔSmix, Tm, ΔHmix, ΔGmix 

Dmax

M1 ΔGmix, Rχ, RVEC, δχ, ΔSmix, cCr, Tm, 
VEC, cMo, δR, cTm, ρ, cC, ΔHmix, cP 

M2 RVEC, Tm, ΔHmix, ΔGmix, δχ, ΔSmix, 
χ, Rm, Rχ, VEC, ρ, δVEC, δR, W, cFe 

M3 ρ, Rm, δR, χ, δχ, Rχ, VEC, δVEC, RVEC, 
Vm, ΔSmix, Tm, ΔHmix, ΔGmix, W 

Final ρ, δR, χ, δχ, Rχ, RVEC,  
ΔSmix, Tm, ΔHmix, ΔGmix 

 
Since XGBoost showed the best predictive 

performance in the general feature space, the impact 
of feature selection on its predictive performance 
was evaluated by cross-validation using the same 
hyperparameters as before. Figure 4 shows the 
scatter plots of all the cross-validated predictions 
for Bs and Dmax. By comparing Figures 4(a, b), it 
can be found that the accuracy of Bs prediction was 
slightly decreased after feature selection. Based on 
the final 10 features selected for Bs prediction in 
Table 2, the estimated μ  [35] of each alloying 
compositions in BS Dataset was calculated and  
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Fig. 4 Cross-validated predictions of Bs based on general feature space (a), selected 10 features (b), selected 11 features 
with μ  (c) and theoretical calculation (d), and Dmax based on general feature space (e) and selected 10 features (f) 
 
added as a feature. As shown in Fig. 4(c), after 
adding this feature, the accuracy of Bs prediction 
was improved a lot with R2 increasing from 0.857 to 
0.911, and RMSE decreasing from 0.127 to 0.101 T. 
Therefore, the estimated μ  made a positive 
contribution to the predictive performance of 
XGBoost model. However, if Bs was calculated 
directly by Eq. (8) based on the estimated μ , the 
accuracy would be much lower than that of 
XGBoost model. As shown in Fig. 4(d), R2 and 
RMSE values for this theoretical calculation 
method are only 0.547 and 0.230 T, respectively. 

The 𝜇̅ estimation method for MGs was developed 
from free electron transfer theory, which is of  
great significance for understanding the magnetic 
properties of MGs. However, to accurately predict 
magnetic properties of MGs, more factors should  
be considered. According to the feature selection 
results, apart from features about electron transfer 
(Rχ, δVEC and RVEC), other features about structures 
(cFe, ρ and δR) and thermodynamic properties (ΔSmix, 
Tm, ΔHmix and ΔGmix) also had an impact on the 
prediction accuracy of Bs. 

For Dmax prediction, the prediction accuracy 
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just slightly decreased after feature selection, as 
shown in Figs. 4(e, f). The R2 slightly decreased 
from 0.675 to 0.669, and RMSE slightly decreased 
from 1.121 to 1.119 mm. However, the number of 
features was greatly reduced from 44 to 10. A large 
reduction in the number of features is very helpful 
in improving the robustness of ML models and  
reduce the complexity of ML models. Though the 
prediction accuracy of Dmax via ML models was not 
as satisfactory as Bs, it had outperformed any 
traditional GFA descriptors based on experimental 
thermal dynamic parameters [41], for example, 
onset crystallization temperature (Tx), glass 
transition temperature (Tg), liquidus temperature  
(Tl) and supercooled liquid region (ΔTx). In addition, 
the ML-based GFA prediction method does not rely 
on any experimental parameter, which has more 
practical value in discovering new MGs. 

More details in 10-fold cross-validation are 
shown in Fig. 5. The same 10-fold dataset splitting 
was used for ML model training based on different 
feature spaces. In general, the sub-fold fluctuation 
of RMSE or R2 had a similar tendency for different 
feature spaces. A ML model with a smaller sub-fold 

fluctuation means that its predictive performance is 
more robust. From this point, feature selection had 
little impact on the robustness of the ML models for 
Bs or Dmax prediction. 

 
3.3 Dmax classification 

Since Dmax distribution in the dataset is too 
unbalanced to achieve regression analysis with high 
accuracy, classification analysis was conducted. A 
binary classification task was presented by setting 
the critical Dmax to be 3 mm, which means that the 
whole dataset was divided into two parts, i.e., 
positive samples (Dmax>3 mm) and negative 
samples (Dmax<3 mm). The five ML algorithms 
used in previous regression were also suitable   
for classification. It should be noted that the 
corresponding classification algorithm of SVR is 
named support vector classifier (SVC) [37]. They 
are different implementations of support vector 
machines. The classification performance of 
different ML models was also compared by the 
10-fold cross-validation strategy. As shown in 
Fig. 6(a), the classification performance of the five 
ML algorithms was comparable, and RF reached  

 

 

Fig. 5 Detailed scores in 10-fold cross-validation: (a, b) RMSE and R2 for Bs prediction; (c, d) RMSE and R2 for Dmax 
prediction 
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Fig. 6 GFA binary classification: (a) Cross-validation; (b) Confusion matrix of RF 
 
the highest classification accuracy of 85.9%. In 
detail, one cross-validated classification results of 
RF were expressed as a confusion matrix in 
Fig. 6(b), where FP is false positive, TP is true 
positive, TN is true negative, FN is false negative. 
For example, 87.7% at upper right corner square, 
TP, in Fig. 6(b) means that 207 out of 236 positive 
samples were correctly classified by the trained RF 
classification model. The prediction accuracy   
was calculated by 100×(TN+TP)/(TN+TP+FN+FP), 
which is the ratio of all correctly classified samples. 
The accuracy for the confusion matrix in Fig. 6(b) 
was calculated to be 85.7%, which is consistent 
with (85.9±5.0)% shown in Fig. 6(a). ML models 
showed good classification accuracy, which could 
guide the discovery of new soft magnetic MGs. 
 
4 Conclusions 
 

(1) Based on two datasets and a general feature 
space, ML models can be trained to predict GFA 
(Dmax) and magnetic property (Bs) of soft magnetic 
MGs. 

(2) Among five ML algorithms, XGBoost 
showed the best predictive performance for both 
Dmax and Bs prediction. 

(3) Knowledge-based feature design can 
greatly reduce the number of features without 
significant accuracy loss. 

(4) With limited dataset quality, treating Dmax 
prediction as a classification problem was more 
practical than a regression problem. 

(5) The predictive accuracy of the trained ML 
models for properties prediction of soft magnetic 
MGs was much higher than that of traditional 
estimation methods based on physical principles. 
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摘  要：提出一种领域知识辅助的机器学习方法，实现对软磁金属玻璃饱和磁化强度(Bs)和临界尺寸(Dmax)的预测。

基于公开的实验数据，建立软磁合金数据库。提出一个通用的特征空间，适用于面向不同预测任务的机器学习模

型训练。结果表明，机器学习模型的预测能力比基于物理知识的估计方法精度更高。此外，领域知识辅助的特征

选择可在有效减少特征数量的同时，不显著降低模型的预测精度。最后，对软磁金属玻璃临界尺寸的二分类预测

进行讨论。 
关键词：金属玻璃；软磁性；玻璃形成能力；机器学习；材料描述符 
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