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Abstract: The cyclic oxidation(30 min hold at 1 100 ‘C, 5 min cooled in air) of electron beam physical vapor deposition( EB-
PVD) yttria stabilized zirconia thermal barrier coatings(TBCs) on NiCoCrAIYHf bond coat at 1 100 ‘C was investigated. Attention
was focused on the development of bond coat and thermally grown oxide(TGO) . The result shows that the bond coat is composed
of B-NiAl and Y solid solution at the initial stage of cyclic oxidation. The B phase is completely transferred to ¥ solid solution af-
ter 186 cycles. The TGO consists of an Al,03 layer and a thin spinel layer in NiCoCrAIYHf/ EB-PVD TBCs. This TGO has a big
growth rate and grows irregularly because of selective growth at Hf riched areas in the bond coat. But the TBCs has a larger critical

thickness of TGO for failure. The thickness of TGO at uniform place is about 10 Hm when the TBCs fails.
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Fig. 1 Cyclic oxidation kinetic curve of
NiCoCrAIYH{/ EB-PVD TBCs heated at 1 100 'C
for 30 min, cooled at 25 C for 5 min
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Fig. 2 Macroscopic photograph of
failed TBC specimen
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K3 YIRS NiCoCrAIYHE/ EB-PVD TBCs 1 T oW & 35
Fig.3 Cross section micrographs of

as-deposited TBC with NiCoCrAIYHf bond coat
(a) —Low magnification; (b) —High magnification

Bl 4 TBCs KA T 1100 CL 17 RAEF AL 5 1 37 TH 00 T 3
Fig. 4 Cross section micrographs of TBCs sample after 17 cycles at 1 100 'C
(@) —Low magnification; (b) —High magnification

KI5 TBCs FEALT 1100 CZE 186 IAEFR 4L 5 i ) THI SO T 3
Fig. 5 Cross section micrographs of TBCs sample after 186 cycles at 1 100 'C

(a) —Low magnification; (b) —High magnification
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Fig. 6 Cross section micrograph of TBCs sample after 354 cycle at 1 100 C
(a) —Low magnification; (b) —High magnification

Bl 7 TBCs #ih T 1100 CHEIREALIE LRI REL
Fig.7 Cracks formed in TBCs after cyclic oxidation at 1 100 'C
(a) —Vicinity of V type TGO; (b) —Undulation interface
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