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Table 1

containing zinc leaching residue (mass fraction, %)

Zn Fe Ge” AgY Cu Pb  SiO,

Main chemical components of germanium

17.17 1487 543.00 89.00 020 2.00 7.09
1) g/t
i 4 — (CaSiO,
*— PbSO,
*— MgFe,0,

24— MeFe,0, (Me: Zn/Ge)

20 40 60 80
20/(°)

1 SRR AR XRD 1
Fig. 1

leaching residue

XRD pattern of germanium containing zinc
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Fig. 2 SEM image and EDS element map scanning distribution of germanium containing zinc leaching residue:
(a) Electronic image; (b) SEM image; (c¢) Ge; (d) Pb; (e) O; (f) Zn; (g) S; (h) Fe
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Germanium containing zinc leaching residue

Stage [ controlled iron low acid pressure leaching

|
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Stage [ leaching supernatant
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Waste electrolyte
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Stage Il leaching solution

(Subsequent processing)
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(Return to stage | leaching)
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Fig.3 Flowsheet for two-stage countercurrent pressure acid leaching of germanium containing zinc leaching residue
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Fig. 4 ¢-pH diagram of Zn-Fe-S-H,0 system at 25 ‘C: 1—Fe’+Zn*+FeSO,; 2—Zn*+FeSO,(H,0).,(s) +Fe,0,(s); 3—
ZnSO,+FeSO,(H,0),(s) +Fe,04(s); 4—Zn*'+Fe,S+Fe’"; 5—ZnS+Fe’+H,S; 6—ZnS+Fe,S+Fe,0,(s); 7—ZnS+Fe,0,+Fe,S;

8—ZnS+Fe,0,+FeS; 9—ZnS+ Fe,0,+S°"; 10—ZnS+Fe+S*
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Fig. 5 Schematic diagram of experimental device
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Fig. 6 Effect of reaction temperature on concentration of

iron, zinc and germanium
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B, T Bt v R PR R i 0 Bt % o P 120 T
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(a) 2 — MeFe,0, (Me: Zn/Ge)
* — KFey(80,4),(OH),
e — CaSO,
& v NaFe;(SO,),(OH),
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v v R
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A

v e VYA
*vA v ° A.A‘,,AA*A 130 C
A
v * %
Ta o Me oo 2% a8 1+ 120°C
20 40 60 80
20/(°)
(b) a— MeFe,0, (Me: Zn/Ge)
* — KFe3(SO,),(OH),
e — CaSO,
' v — NaFe3(S0,),(OH),
e X
. 160 C
*A M ™

R | P P S R SRR L (Re
20 40 60 80
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2084 f—> A
2p80 ; 2587
2455 7/ﬁ 2503 .
— VI 2459 160
2352 150
c 2540 1 L) K
© ol 140 »
2221 §
Intensity 130 g
g
&

'A— MeFe,0,(Me:Zn/Ge) ¥—MFe,(SO,),(OH)(M:K/Na)
10 2.0 3I0 4I0 5|O 6I0 7I0 80
26/(°)
7 AFEBORE T T BOR HE ) XRD %
Fig. 7 XRD patterns of leaching residue in stage [ at
different reaction temperatures: (a) 120, 130 and 140°C ;
(b) 150 and 160°C; (c) Peak intensity comparison chart

BN 12 v B 2040 6T 2 i (WL 10)IERH 17X —
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.I
2
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Fig. 8 Effects of initial acidity on concentrations of iron,

zinc and germanium in leaching solution of section [
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(a) 2 — MeFe,0, (Me: Zn/Ge)
* — KFe3(S0,),(OH)s
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b 0 v — NaFe;(SO,),(OH),
Y a [} o A A A 69 g/L
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A
v ®
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10 20 30 40 50 60 70 80
26/(°)

Fig. 9 XRD patterns of leaching residue in stage [ under different initial acidity: (a) XRD patterns; (b) Peak intensity

comparison chart
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Infrared spectra of leaching residue in stage I under different initial acidity (Figure (b) is a partial enlarged view of
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Fig. 11  Concentration of zinc, germanium and iron in

leaching solution of stage [ under high temperature and

high acid

a— MeFe,0, (Me: Zn/Ge)
* — KFe3(50,),(OH),
e — CaSO,
v — NaFe3(S0,),(OH),
= e x 4 +— Fe,)0,
* v H
[ 'L oY |4 v
s IS A 02 Kk a YR 4 180°C
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* <
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.
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|

v ¢ v
* y L*A
Ll 'ULJLA e i v A 140 °C
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20/(°)

E12 FREEL R B2 XRD i
Fig. 12 XRD patterns of leaching residue in stage

under high temperature and high acid
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Fig. 13  Effect of reaction time on zinc, germanium and

iron in leaching solution of stage |
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. e« — (CaSO,
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[ ] * q
* A.
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A
o *x
A % A A
MW A * A min
1 I I 1
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26/(°)
(b) 2 — MeFe,0, (Me: Zn/Ge)
* — KFe;(80,),(OH),
e — CaSO,
v — NaFe3(S0,),(OH),
* v }A 1
* b4 o * oA ; *x A A IN 180 min
SR
rE | Hte s 2% 4,4 a 120min

697

739 B

Moo |

A—MeFe,0,(Me:Zn/Ge) ¥—MFe,(SO,),(OH),(M:K/Na),
1 1 1 1 1 1

10 20 30 40 50 60 70 80
20/(°)
El14 AR ES 1Bz R XRD 1%
Fig. 14 XRD patterns of leaching residue in stage I
under different reaction time: (a) 0, 30 and 60 min; (b) 120

and 180 min; (c) Peak intensity comparison chart

2.5 LZREFMHIR

TER N 140 °C WIURER B 46 g/l N
/&) 180 min. % %)% 0.3 MPa. W[E Lk 6 mL/g. $itdk
%14 500 r/min (1) T BUEEACER I R IR AR AL E AR



EREE KIEE, 5

R R N SR AR BRI AT 3465

100 — 1.0
— P Zn
T_] T Ge
S 80 N Fe 10.8
$ {0.6 =
2 2
e @
g {04 £
.% QU
en
E {02
2

0

p(0,)/MPa
El15 o xt [ BaR Bl ee. B BRIRIE RIS

Fig. 15 Effect of oxygen partial pressure on concentration

of zinc, germanium and iron in leaching solution of stage [
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Fig. 16 XRD patterns of leaching residue under different

oxygen partial pressures in stage |
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Table 2

leaching residue in stage [ (mass fraction, %)

Main chemical composition of pressurized

Zn Fe Ge" Cu Mg
11.56 20.47 493.60 0.14 0.42

1) g/t
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Table 3 Main chemical components of pressure leaching

solution in stage [ (g/L)

Zn Fe Fe" Ge” Cu”  Si0, Mg
7598 1.88 1.60 5530 170.00 0.66 2.73
1) mg/L
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Fig. 17 XRD pattern of pressure leaching residue in

stage | of comprehensive experiment
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Fig. 18
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SEM-EDS diagram of pressurized leaching

of comprehensive experiment:
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Table 4 Experimental results of pressure leaching in

stage II
Metal  Mass fraction/% Leaching rate of metal/%
Zn 1.41 96.24
Fe 17.65 45.44
Ge 370.00" 68.76
Cu 0.02 94.73

1) g/t
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0.15%- 643.50g/t FF 1K %2 1.41%- 0.02%. 370.00g/
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Fig. 19 XRD patterns of pressurized leaching residue in
stage Il
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Pressure enhanced leaching and iron precipitation behavior of

germanium containing zinc leaching residue

ZHANG Zhao-yan', LI Cun-xiong', DAI Xing-zheng?, ZHANG Mei’, LU Zhan-qing?,
LIU Qiang', ZHANG Yao-yang'

(1. Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology,
Kunming 650093, China;

2. Yunnan Chihong Resources Comprehensive Utilization Co., Ltd., Qujing 655000, China)

Abstract: Given the critical technical issues in the treatment of zinc leaching residue, such as low metal recovery

and a large amount of hazardous waste iron residue, this paper proposes a two-stage countercurrent pressure acid

leaching process route for zinc leaching residue, consisting of I-stage iron-controlled low acid pressure leaching

and II-stage deep high acid pressure leaching. Taking the germanium containing zinc leaching residue produced by

a zinc hydrometallurgy enterprise as the research object, the leaching behaviors of Zn, Ge, and Fe, the high-

temperature hydrolysis precipitation behavior of iron, and the evolution law of the iron phase in the process of iron-

controlled pressurized low acid leaching in stagelwere studied. The results show that temperature is the key factor

affecting the efficient precipitation of iron and the composition of the iron phase. Increasing the temperature can

promote the hydrolysis of Fe** to form jarosite (MeFe,(SO,),(OH),) and is conducive to the dissolution of ferrite
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(MeFe,0,). Reducing the initial acidity and prolonging the reaction time are conducive to the development and
growth of jarosite crystals. In the high-acid system, the thermodynamic stability of jarosite decreases and is not
conducive to the hydrolysis and precipitation of Fe**. However, by increasing the reaction temperature, Fe** can be
hydrolyzed to form iron precipitation phases such as jarosite and hematite (Fe,0,), so as to achieve the purpose of
efficient precipitation and separation of iron; Because iron in zinc leaching residue is mostly in the form of Fe**,
the effect of oxygen partial pressure on iron precipitation and separation in I-stage leaching is negligible. Under
the optimized conditions of I -stage iron-controlled low acid pressure leaching with a reaction temperature of
140 °C, initial acidity of 46 g/L, a reaction time of 180 min, oxygen partial pressure of 0.3 MPa, a liquid-to-solid
ratio of 6 mL/g, and stirring speed of 500 r/min, more than 90% of the iron is hydrolyzed and precipitated into
alum, and the I-stage leaching solution with an iron concentration of only 1.88 g/L is obtained, which provide
favorable conditions for the further separation and extraction of valuable metals from the leaching solution. After
the II-stage of deep high-acid pressure leaching, the total leaching rates of the two stages of zinc, copper, and
germanium are 96.24%, 94.73%, and 68.76%, respectively. The two-stage countercurrent pressure acid leaching
process of the germanium containing zinc leaching residue can be realized at the same time. With the high-
efficiency separation of zinc and iron and high-efficiency leaching of valuable metals such as zinc, copper, and
germanium under high-acid pressure leaching, the total leaching rates of the two stages of zinc, copper, and
germanium are 96.24%, 94.73%, and 68.76%, respectively. The two-stage countercurrent pressure acid leaching
process of the germanium containing zinc leaching residue can be realized at the same time for high-efficiency
separation of zinc and iron and high-efficiency leaching of valuable metals such as zinc, copper, and germanium.

Key words: the germanium zinc leaching residue; pressurized acid leaching; leaching rate; hydrolyzed iron

precipitation; jarosite
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