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Table 1 Mixing entropy of alloys with different number of main elements at equal mole

Main element number 1 2 3

4 5 6 7 25

AS OR 0.69R I.1R

conf

1.39R 1.61R 1.79R 1.95R

3.21R




3390 T A e E SR 2022 4 11
12 :
5t = = = FCC
10+ : = im A i * FCC/BCC
* Experimental data oL = . A BCC
—~ r 5 .
E gL % sl = v E: . v Intermetallics
- E i
= - = o | & A ¢
2  Maximum .-’ < " 2
= valug -~ £ s ?)'5 v
R 3 gL
Minimum b R &
5| value —20r Loy v
I L v
0 __EI ______ L L L L L I_-_- _25 i ; o
2 3 4 5 6 7 8 9 10 0 2 4 6 8 10 12 14
Main element number 5%

Bl ®EuAEESEEAREGC A
Fig. 1

component alloy’

Summary of phase number of each principal
[16]

FHHER|SH, MEN2: BT UEEH N,
TERAREAN N 3; M F o R HIE RO, HAA
A A2, ATLAURIL, MESEFEITRANEZ,
FITTE B AR O H 2188 n, BRI N T a
BT TE BRIIAR A e KA . IR M & & u = H
NS, HIERAHE R H 8 &SR
MK, N2, BE—2BUill T ks, A A
(R4 B izt /N T |h 5 A TR e e KB H
LR = (VR A R A4S 32 0 R A AR A 3 K,
A D g K 3 4 D] iy R 2 5 T AR R R TR Ak
=r/R

R B R P A SR B, K (e s (6 15 vy
TEAERRE o« B IRTR AR A6 S A1) T T 1 ] v
MAZEREELEY. HTE&BRLEVZEE T
M, ARSI R L B R I A A58, R
TN 0,
122 AR IR AR RN R

A 4 LA 2 P e 2E R ) i TR [ 9 A
M, H— A & o 5 7S MR BE AL o5 4 b A
AL E, R T s BUR T 5 A R T2
gy, FTCAHRI YSRGS, A ] BT U 40 1) R
71, Hk, HEBARRER . KT 45 B
AR, W LAHE ST & TR R TR 2 N3 )5 2
TR

5/§}(1§;r) (2)

2 FCC.BCC Hl4: & [k & WA it JR 1 RH ¥ 7 207
Fig. 2 Atomic size mean square error of FCC, BCC and

intermetallic compound phases!!”?

H Q)T LUE H 8 BITR/INRT e B 28 1) FE
FER KRB, K284 T &Mk mEt. K2
Hf 1, FCCHISMEE/N, BCC &tikz, &gl
WA K. 20<6.6%I, &&bm TR
EVRRZER: 240>6.6% I, & 4 N MK 48
LA ST . MU, ok i % w
A, AH BB ORER R B RN P, T R
M EF A AL, AR Ik s B R . fR
I, AT LUK 6=6.6% 1F A4 B S AR kAR, 658
TFAE RS AR N, B2 T R R 1 R~
MR R . FL b, EMAEZMARR
~SFOABURE R R B, AT 2B AT, B
BUE KR JEF RS S B8ORS R AR R R s, HILT
JERRAH ISR o X PP AR BN MR N 0%
HLeE . SRR mE S SN
AR H AT AR 2, WA F tE AN R T

R, BT RGeS ea MR, AFH
TR WG G REARPER, fEaHees
HILE AR, B “XGREW” AN, XEERXE
S M REMI RS . Cr Al Si AL e R &R
A & iR U A RE 1 7E FeCoNi R Eiil & 4
I INS & 1R AR & &, 22 BCCAH
(RIS, (TS FL BH 6 B A5 A 1R 58 e, ]
3FTR. M2, EEE&MECRERTFRE LT
VEH S R ANRITE & & LR G 1R
1.2.3 IR HRLR

HAT, =lESER2Y MR AA £



32 EE 11 gk R, S EEA ST E AR KA R S AT 3391

10

FCC FCC+BCC BCC
9 L
~~ 8 B
£
°
$7
®
6 L
—=—300K
5| *-350K
—a—450K
0 0.5 1.0 1.5 2.0

x in Al,CoCrFeNi

3 AlLCoCrFeNi £ < 1 L BH Bl AL 548 A 1) 5 A2 R
i
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Mn, Fe, Co and Ni in different matrices
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Fig.10 Hybrid MC-MD simulation of Ru-5 HEA nanoparticle after diffusion at 1500 K and quenching at 298 K(a)
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Table 2 Summary of the electrocatalytic performance of high-entropy alloy catalysts

[49]

Reaction Composition Structural feature ¢, (RHE)/V Tafel slope/(mV-dec™) Electrolyte
PtPdRhNi Nanoparticles 0.86 32 1.0 mol/L KOH
PtPdFeCoNi Nanoparticles 0.85 31 1.0 mol/L KOH
PtRuCuOslr Nanoporous 0.864 - 0.1 mol/L HCIO,
© CrMnFeCoNi Nanoparticles - 82+12 3 mol/L KCl
AINiCuPtPdAu Nanoporous 0.9 - 0.1 mol/L HCIO,
AINiCuPtMn Nanoporous 0.945 47 0.1 mol/L HCIO,
Reaction Composition Structural feature Overpotential/mV  Tafel slope/(mV-dec™) Electrolyte
AINiCuPtPdAu Nanoporous - 28 0.1 mol/L KOH
HE AINiColrMo Nanoporous 18.5 322 0.5 mol/L KOH
PtAuPd(RhRu) Nanoparticles 90 62 1.0 mol/L HCIO,
CoFeLaNiPt Nanoparticles 555 0.1mol-L™' KCI
Reaction Composition Structural feature ~ Overpotential/mV  Tafel slope/(mV-dec™) Electrolyte
CoFeLaNiPt Nanoparticles 377 - 0.1 mol/L KOH
FeNiMnCrCu — 342 58 1.0 mol/L NaOH
OER MnFeCoNi Nanoporous 302 83.7 1.0 mol/L KOH
AINiCoFeMo Nanoporous 240 46 1.0 mol/L KOH
MnFeCoNiCu Nanoparticles 263 43 1.0 mol/L KOH
Reaction Composition Structural feature Overpotential/mV  Tafel slope/(mV-dec™) Electrolyte
PtFeCoNiCuAg Nanoparticles 1.09 0.504 0:3 mol/L H,S0,
MOR 1.0 mol/L CH,OH
IrOsPtRhRu Nanoporous 1.26 0.86 0-3 mol/L H,S0,

0.5 mol/L CH,OH
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Application of high-entropy alloys in water electrolysis catalysis

ZHANG Quan, LIU Xi-jun, LUO Jun

(School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China)

Abstract: The high-entropy alloys are considered as one of the major breakthroughs in alloying theory in recent
decades. They have unique alloy design concept and significant mixing entropy effect, and have potential
application prospect in many properties. This paper summarized the research progress of high-entropy alloys
catalysts in electrolysis of water in recent years, and introduced the definition and features of high-entropy alloys
and the principle of electrolysis of water and catalytic mechanism of high entropy alloys during hydrolysis
process, respectively. The research progress is on water hydrogen precipitation and water oxidation in electrolysis
of high entropy alloys. The development trend and application prospect of the future of the high-entropy alloys are
also prospected.
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