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Fig. 1 Initial microstructure of TA1S5 titanium alloy
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Fig. 3 True stress —strain curves of TA15 titanium alloy

under different deformation temperatures
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Variation of temperature rise with deformation

Deformation temperature/'C Temperature rise/C

800 8.2
850 6.3
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960 1.4
980 1.2
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Fig. 5 Microstructures of TA15 titanium alloy with true strain of 0 at different temperatures: (a) 800 C; (b) 850 C;

() 900 C; (d) 940 C; (e) 960 C; (f) 980 C
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Table 2 S phase yield stress of TAILS titanium alloy
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Deformation temperature/’C  f phase yield stress/MPa

800 31.6
850 28.5
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Table 3  Critical stress (or work) applied on a phase

Deformation Critical stress/ Critical work/
temperature/C MPa (J-mol™)
800 100.4 1082.8
850 78.8 849.9
900 58.3 628.8
940 42.8 461.6
960 354 381.8
980 28.1 303.1
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Behavior and thermodynamic evaluation of a—/f dynamic
transformation in TA1S titanium alloy during
hot deformation in two-phase regions

ZHANG Qi-fei, JIN Miao, WANG Hao-yu, ZHANG Yu-sen, CHEN Lei, GUO Bao-feng

(School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China)

Abstract: The hot compression tests of TA15 titanium alloy were carried out on Gleeble—3800 thermomechanical
simulator with a deformation temperature range of 800—980 “C. The microstructure evolution of TA15 titanium
alloy was analyzed by scanning electron microscopy (SEM). Combined with the quantitative data of
microstructure and flow curve, the thermodynamics evaluation of TA1S5 titanium alloy during hot deformation was
explained. The results show that dynamic transformation (DT) can be observed in TA1S5 titanium alloy during hot
deformation below the S-transus temperature (7y), which can cause the true stress-strain curves to show apparently
flow softening phenomenon leading to the yield stress significantly higher than the steady stress. The volume
fraction of the primary o phase (f,) is sensitive to deformation temperature and strain. With the increase of
deformation temperature or strain, the f, = decreases or even disappears completely, indicating that the DT can
cause the 7 of TAIS titanium alloy to decline. The DT in TA1S5 titanium alloy is a stress-induced type, and its
activation condition is that the driving force overcomes the energy barrier. The energy barrier value is numerically
equal to the minimum critical driving force with 70-742 J/mol, and the range of the maximum driving force is
507-3306 J/mol. The maximum and minimum driving force and energy barrier decrease with the increase of
deformation temperature.

Key words: TA1S5 titanium alloy; flow softening; dynamic transformation; stress-induced type; thermodynamics

evaluation
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