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Fig. 4 Results of differential thermal analysis of Al-20Si-xCu series alloys: (a) Al-20Si-1Cu alloy; (b) Al-20Si-2Cu alloy;

(c) Al-20Si-3Cu alloy; (d) Al-20Si-4Cu alloy
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Fig. 10 Numerical simulation stress distribution diagrams of Al-20Si-xCu series alloys in hot tearing: (a) Al-20Si-1Cu alloy;
(b) Al-20Si-2Cu alloy; (c) Al-20Si-3Cu alloy; (d) Al-20Si-4Cu alloy
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Hot tearing behavior and its mechanism of
high silicon aluminum alloy Al-20Si-xCu

YUAN lJian-wei, CHEN Yi-qing, YU Jun-chao, ZHANG Kai-xuan, ZHOU Rui

(School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China)

Abstract: The solidification process and hot tearing behavior of Al-20Si-xCu series alloys were investigated. The
solidification process was analyzed by differential thermal analysis (DTA) and the hot tearing behavior was
studied by self-made “T” mold, the Clyne and Davis models were used to predict the hot tearing sensitivity of
ternary alloy. The results show that the hot tearing sensitivity predicted by the crack sensitivity coefficient (CSC)
is consistent with the experimental results of Al-20Si-xCu series alloys. The hot tearing sensitivity (HTS) of the
alloys is Al-20Si-3Cu>Al-20Si-4Cu>Al-20Si-2Cu>Al-20Si-1Cu. At the same time, ProCAST simulation
software was used to simulate the filling, solidification and cooling processes of alloy castings by using the
method of numerical calculation and comprehensive solution based on finite element method (FEM), and the hot
tearing stress and hot tearing index (HTI) were predicted. The numerical simulation results were in good
agreement with the experimental results.

Key words: aluminum-silicon alloy; hot crack sensitivity; thermal analysis; the numerical simulation
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