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Mechanisms of polycrystalline Cu thin films
during nanoindentation creep

WANG Fei. XU Kewei
(State Key Laboratory for M echanical Behavior of M aterials,
X7 an Jiaotong U niversity, X7 an 710049, China)

Abstract: Two creep experiments were conducted on polycrystalline Cu thin films with nanoindentation instrument.
The thin films were deposited by magnetron sputtering technique. The results show that the loading modes have great ef-
fect on the nanoindentation creep properties. The changes of stress exponent depend on the rate of work hardening under
different loading conditions. And with increasing holding load, the stress exponents increase under both two loading modes

because of many accumulated dislocations under the indenter tip, which reduces the creep rate for the indenter and makes

it difficult to penetrate further.
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Fig.1 Force and displacement as a

function of time from creep test
(a) —Mode one; (b) —Mode two
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Fig. 2 Variation of stress exponents with change of

holing load for deposited copper thin films( mode one)
(a) —1.5 mN; (b) —3 mN; (¢) —6 mN
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Fig. 3 Variation of stress exponents with change of

holing load for deposited copper thin films( mode two)
(a) —1.5 mN; (b) —3 mN; (¢) —6 mN
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