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Microstructures and mechanical properties of
AZ31 magnesium alloy sheet processed by
equal channel angular rolling

CHENG Yong qi, CHEN Zhen-hua, XIA Werjun, FU Ding-fa
(College of Materials Science and Engineering, Hunan University, Changsha 410082, China)

Abstract: AZ31 magnesium alloy sheet were prepared by equal channel angular rolling (ECAR). It is found that
the orientation of the sheet processed by ECAR is changed and the crystal orientation evolves from (0002) basal
plane orientation to coexistence of basal plane and nombasal plane. Compared with as received sheet, the grain size
increases slightly and twins are presented. The strength of the sheets after ECAR is improved evidently, and the
elongation to failure is varied lightly, especially processed by 1 passed whose ultimate tensile strength increases from
240 to 275 MPa and the yield strength increases from 193. 8 to 239. 2 MPa. And the strength decreases gradually
with the increasing pass numbers. The ultimate tensile strength of 4 passed sheet is 250 M Pa and the yield strength
is 207.3 MPa.
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Table 1 Parameters of ECAR mould
Oblique Oblique

Curvature
Curvature

angle of radius of radius of
angle,
channel, W () channel, corner,
(%) r/ mm R/ mm
120 59 4 6
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Fig. 5 Mechanical properties of AZ31
magnesium alloy sheet before and after ECAR
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