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Rationality of FEA model in fluid fields of
aluminum roll casting

ZHOU Ying, HUANG Ming-hui, ZHONG Jue
(School of Mechanical and Electrical Engineering, Central South University,
Changsha 410083, China)

Abstract: To explore the computation standards for finite element analysis of the fluid fields of the front-box and
the nozzle-shaped space of aluminum rolkcasting, the computation was performed by using the FLOTRAN module
of the general finite element analysis software ANSYS. Postprocessing by ANSYS and stricter analysis of results by
software MATLAB was reviewed. The allowable inhomogeneity and its applicabilities for fluid field finite element

analysis have been rendered down from observations and recorded data of two experiments in reality. The primary

standard of finite element analysis will be enriched by the developing technique of experiments and software.
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Fig. 1 Schematic of boundary

conditions of FEA model
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(b) —Double spacers model B

1.2 MR

WA K1) 432K 7S T A4 B 5 A (1] 2), X
ANSYS Wi B AR PR T 2 B R R X
SMERERIK, BN T WS E I TAER, 2] DL
BhsRfgte e MR A3 E N R I 45 R0 . B 2(a) BT
7NN AN S A RS P RS (R 25440, 181 2(b) BTn A A
B AR R s B

2 R0

e I EE 2= 0 AL E B, BEH
PO FEAE M A R, 8 2 BN p ik ek (& 3
FE7 R B AT () Y ST A v, S
oy M), B CAEECH [T AE 8 TAE P, 4
SCH R R BE 43 A At D R IR FE 4T

B O EAE 3 MAFR T 1) B s, o,
H5HEHEER—ANREH, v.(10 '~ 1005 FHHE
&) v (107 °~ 107 " 5T EHE) ¥/ iZtE



+ 1102 o EA 4R R 2005 47 A

0'030 e

;3\

1 08 : o 1 2
© 06 04 02 g2 7!
*/m z/mm
B3 #HEBHHOMN y=0"LEFNEN v, 7HFIEE
2 A FRITHLRY A N TE R B A R R Fig. 3 Display of v, of nodes at
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(a)—Single spacer model A; (b)—Double spacers model B
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(a) —Single spacer model A;
(b) —Double spacers model B
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Table 1 Analysis of v, at middle line of outlets of two models
Model Thickness of  Discontinuity point s vyl Speed of strip/ Absolute error of Fractional error of
ode exit/ m x coordinate/ m (m=*s 1) (me=s 1 vyl/(me* s 1) vyl %
0.399 0.021 824 0. 005 324 32.267
A 0. 004 0. 445 0. 020 606 0.0165 0. 004 106 24. 885
0.491 0.021 676 0.005 176 31.367
0.325 0. 025 553 0. 006 353 33.091
0. 004 0.0192
0. 565 0. 025 570 0. 006 370 33.177
B
0.325 0.033 161 0. 008 161 32. 646
0. 004 0.0250
0. 565 0.033 182 0. 008 182 32.728
F2 WAMAERPEOM(y= 0) L7 z 20K Zvy W 5 TR A
Table Distribution of sum of v, along z axis at outlets of two models
. Thickness of  Discontinuity point s vyl Speed of strip/ Absolute error of Fractional error of
ode
exit/ m x coordinate/ m (me*s 1) (me*s 1 vy/(me* s 1) vyl %
0.399 0. 057 283 0. 007 783 15.723
A 0. 004 0. 445 0. 056 161 0.0165 0. 006 661 13.457
0.491 0. 057 094 0. 007 594 15. 340
0.325 0. 067 582 0. 009 982 17.329
0. 004 0.0192
0. 565 0. 067 758 0.010 158 17. 636
B
0.325 0. 088 367 0.013 367 17.823
0. 004 0.0250
0. 565 0. 088 423 0.013 423 17. 897
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