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Constitutive model of aviation aluminunr alloy material
in metal machining
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Zhejiang University, Hangzhou 310027, China)

Abstract: High temperature, high strain and high strain-rate of metal material in machining were not easy to get
with a general measure method, which made it quite difficult to establish the dynamic constitutive model. To solve
this problem, a combined modeling method based on “single factor” flow stress formula calculating and FEM simula-
tion was proposed. The flow stress was repeated by calculated using the “single factor” flow stress formula, the
metal machining process was simulated interatively with new flow stress. When simulating value was in good con-
sistent with experimental result, the “three-high” data and flow stress data were obtained. By analyzing these data,
it indicates that straimrrate can enhance the flow stress, while temperature will lower flow stress, and after remained
in a steady state, each stress —strain curve will be parallel to the strain coordinate axis. Zerillr Armstrong experience
model was selected correspondingly. With the nom liner regression analysis, a dynamic constitutive model of aviation
aluminum-alloy material during milling process was established. At last, the constitutive model is proved to be rea-

sonable through test verification.
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Table 1 Flow stress and strain for
different strain rates at 110 'C( M Pa)

Strain rate/ Strain
10°s7! 0.2 0.4 0.5 0.8 1.1
1.05 5523 541.1  543.3 5428  543.6
1.30 583.6  572.1  572.8  571.9  574.1
3.10 630.4  621.9  621.6  622.2  623.4
11.0 735.1  724.1  725.6  726.8  723.5
2 113 CHRR[F RAR 2R [ R AR A0 30 B )

Table 2 Flow stress and strain for
different strain rates at 113 'C( M Pa)

Strain rate/ Strain
10°s! 0.2 0.4 0.5 0.8 1.1
1.05 548.2  537.3  538.0  536.6  579.2
1.30 552.4  544.2  S41.8  542.6  543.7
3.10 620.4  610.9  609.6  611.0  610.2
11.0 703.6  690.1  692.8  691.2  694.2
£3 132 CRRIR B KB A2 Mo

Table 3 Flow stress and strain for
different strain rates at 132 ‘C( M Pa)

(2) .
Strain rate/ Strain
10%s! 0.2 0.4 0.5 0.8 1.1
1.05 483.7  472.8 4721 4735 4718
1.30 511.6  502.4  503.1  502.6 5018
3.10 570.4  559.5  560.7  562.2  561.6
11.0 625.7 617.2 6143 6152  616.6
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Fig.1 Orthogonal cutting finite element iterative simulation process
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Table 4 Flow stress and strain for
different strain rates at 138 C( M Pa)

Strain rate/ Strain
10° s~ ! 0.2 0.4 0.5 0.8 1.1
1.05 462.3  453.0  451.3  451.6  452.2
1.30 496.7  487.1  485.5  486.6  488.8
3.10 533.4 5241 5221  523.8  522.7
11.0 596.2  585.1  584.3  587.2  585.7
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Table S Regression parameters of

ZA model for aviation aluminum

alloy material 7050-T 7451
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Table 6 Comparison between simulation and
experiment value of main cutting force

at different milling speeds

Simulation Experiment Relative error

Milling speed/

between two
(mm s~ 1)

main cutting main cutting

force/ N force/ N value/ %
1963.3 512.0 559.0 8.40
2473.3 520.0 569. 0 8.61
3116.7 259.1 276. 5 6.85
3926.7 109. 0 118.0 7.63
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