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First principle study on structural stability of
Ca alloying Mgz Ali2 phase
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(School of M aterials Science and Engineering, Hunan University, Changsha 410082, China)

Abstract: Using the first-principle pseudopotential plane-wave method, the energy and electronic structures of Ca
alloying M gi7Ali2 phase were investigated. The results show that the negative formation heat and the cohesive ener-
gy of (Mgi7-.Ca:) Alia(x= 0, 1, 4, 12) phases gradually increase when the Mg atoms at 1, II, Illpositions of
Mgi7Ali2 phase are substituted by Ca respectively, which indicates that for the alloying ability of (Mgi7- . Ca:) Al
(x= 0, 1, 4, 12) phase the replacement of Ca for Mg( II) atoms is the strongest among the above three substitu-
tions, and the (MgsCai2) Aliz phase formed by this manner has the highest structural stability. After compared the
densities of states (DOS) of (M gir- x Ca.) Ali2 phases, it is found that the increase of the structural stability of M gi7

Aliz phase alloyed by Ca attributes to an increase in the bonding electron numbers at lower energy level below Feimi

level, which mainly originates from the contribution of valence electron numbers of Al(p) and Ca(s) orbitals.
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HaeftEH 468 C, W, @RS H T AL
SR, CRAXMESE TE, FHRRTFHESSE
TR, BAA RS SRR, H Mgr Al
AHEES AR, Ca & 4 A0 BE A 08 m BOK R 2
e, WPARHAERPLER 2 — M EFR AR XKL
Y€ . BlE, XN @SS58 BT EIS(EET) A
e ghfg BT T3, A TAE BRI
HT CaXf MgrAlo AP =K Mg JR (KK 1)
B G F4MREERZN, LR Ca &5
Mg Al fHRRE R EEFFE Ca &t m T
AFMg( ) JR 7R B e pir gt 5 JE e bt i B2, 9 HL
Al oA W AE B AT A Bk T ) 2 B BE AT
fHI2, A A2 8 T X H Mg ( 11D JR ¥ 1
Bk, WA MREER A XN HAFAE Ca &8
(11 T% B BE 70 RN & A Jo AH 25 A8 A e M 55 0 Th R AT
A, i, ASEF S — P RAE TR EZ R
WS — R RSB T , W RFHR T
MgirAlef Ca Gl IRE R 5 LT 451, L
FAERTT Ca & @ XT M gir Al AHSGS # %3 52 T 1) 52 i
F IR B .

1 WEES

1.1 A

A12 B Mg Al AHIP) Sa AR S5 A W B 1( a) BT,
KSR a= b= c= 10.5797 A. Z5[AEEN 143m,
REIRE Ta . SR R T 28k 58, &RTF
ARFR A

+2Mg(T): (0,0, 0), (1/2, 1/2, 1/2);

+ 8Mg( ID): (x, x, x), (- %, —x, x), x=

FAVEE, 5 Mg Al Ca &b Mt e N — RE T . 547 -
0. 32;

+ 24Mg( IID: ( x, x, z), (- %, — x, z),

(- %, x, —z), (x, —x, —z), x= 036, z=
0. 04;

+ 24AL: (%, x, z), (- %, —x, z), (- %, %,
-z), (x, —x, —z), x=0.09, z= 0. 28,
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Fig. 1 Modes of cell(a) and primitive cell(b) of Mgi7Ali2 phase
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0.01eV/ A AZEmMBAT S50 x100* A NS
#Z/MF 0. 02 GPa.

2 ZiR5iTR

2.1 PH AR AL
Mgi7Aliz « (Mgis Ca) Aliz -
(MgsCa2) A Lo J2 B IR~ A 5 BUE IR 1 B .
ZREIR, Mgr Al JRHF4 S A H 28 9. 057
A Hszub(io. 145 A HAEH A12-MgrnAls &
A B S2 B 10. 56 A g 53] R,
WRZEEN 0.962% ; Ca G<eAb)a, A B i~ 4 i
B B R, 2 Ca MUK E # Mg Al A A Y
Mg(1).Mg(Il) M Mg ( II) J& 7 &, #HMNK
(MgisCa) Alz « (Mgis Cas) Aliz « (MgsCar) Al *F
ARk BRI G K, R B Ca &b Mgy Al
AHE & AR AR RZ K, s 4 R 5 SCHR[ 6] R E B
M gi6.5- Cao.s A Lz i JL K0 45 4% % $0( 40 10. 608 A) L
Mg Al KEIZR—3 .
1 CaBLMaiE Mg Al MHI
T A% () FIA SR L AH)
Table 1 Equilibrium lattice constant (a) and
formation heat ( AH) of Mgi7Ali2 phase with
and without Ca addition

Phase ol A Eil eV i _Ag : )
MgirAliz 9057 - 173116439 - 00340
(MgisCa) ALz 9094 - 17338 3387 - 00590
(MginCa) Al 9.260 - 17417.4775 - 0 1023
(MgsCaz) Al 9.887 - 176253379 - 0. 1085

2.2 EEERHA
KA T ARIHET (Mg Car) Al J5 AR
BV SRR R F I A Al )

4
29

xE Sia— 12E 8] (1)
X EoRNEHRMEGER, EXa  ESa « Edia?
MEX R A hepMg « feeCa - fec Al PR T
REE, » R ES Mg JR T Ca 58 MLRT
AL RERRTREREITEN, RHASHHHE R
BEE AN E S Mg . Al Ca kSR T RE&
I B AE 4> 9 — 977.87 eV . — 57.24 eV .
- 1003. 83 eV . iHHAFEIH Mgi7 ALz + (MgisCa)-
Al «(MgizCas) Aliz « (MgsCar2) Al & 445 K

AH = 7 [Ew— (17— x) ESfa—

(Mgiz Cas) Aliz

AR 1 Pros . AR 1 AT, B HRETE SRS 5
AR E, R Mgrn Al Al Ca &L RETE
BAS E G5 Y Ca IRKIREBAK RSP Mg( 1) -
Mg( II) A Mg ( II) J& I, A 4 5 A s B ik 1
K, RUBEE Ca &R, Mg Al
Camr&fbre Higm MERMS, Ca Bi#
Mgir Al AHH Mg( 1) JRF RA L EH Mg( 1)
Mg( II) Jo 7 S s 1) & <AL B RRE D) .

2.3 4ifne

H TN Ca G4AX Mg Al A5 H R e M
Mg, RAW T AXIET (Mg« Ca) Al Ji
M S5 A RE(Ean) '

Ecoh: §]§[Emt_ (17_ x)Eglfr%m_
anClim_ 12E:t!:m] (2)

XA Elin  Edn « Enon 7 RN RS Mg
Ca Al HHJR FRIBERE . Mg . Al. Ca H IR TR
BT EAE 5 R - 976.39 eV . — 53.46 €V .
- 1001. 84 eV, IHASE Mgy Al #H Ca & &ALHT
JEWEE R 2 Fron . WE 2 AT 0L, Ca A4k
B EHRERFE Mg( 1) . Mg( 1) F1 Mg
(I JETJ5, (Mg« Ca:) Al J5 44 & 1 45 & RE
WIRIEK . T SRR 45 &R Bl T 45 G Rek R
ARV M A BE L 2K B B R TS S AR T R
TR e, AR AL A it A 2 iR S PR SR T 7 Al

K2 CaB&tbii)E Mg Al M4 & BE(Eon)
Fig.2 Cohesive energy (Ecn) of
Mgi7Aliz phase with and without Ca addition
(No, Mg(I), Mg( II) and Mg( II) denote Mgi7Al:2,
(MgisCa) Aliz, (MgizCas) Ali2 and
(MgsCai2) Ali2 phases, respectively)
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Fig. 3 Total and partial DOS of Ca alloying M g7 Al phase
(a) —Mgi7Aliz; (b) —(MgisCa) Aliz; (¢) —(MgsCar) Aliz; (d) —Total DOS
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BT Mg(s) « Al(s) « Al(p) ¥rEToiERkSl, EH
—#5r K B Ca(s) YT oIMk, MAE- 20~ — 25eV
T A, BRSPSk B Al(p) B+ 1)
DTHR, AEH I ) R B e 1) v B MG OK

lﬁaﬁttt&@ 3(d) ﬂjrlL, MgnAllel/‘]igﬁE
BHIE AT 0~ — 10 eV LW, Ca B Mg( 1)
JRFJE, (MgisCa) Al EEFSEEIEITE 0~ — 10 eV
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BARPIRAE 0~ — 10 eV Yol A, {H R8I I & B
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AL TR RE G X A AR R 45 4 A8 15 B8 A e,
I, Ca BE# Mg( 1) JR T IEARE BN T HBiAs
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3 4R
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BRI Ca 4G Mgir Al AR AR AE 27 X R et
N 2, HoRIFFEZER Al(p) M Ca(s) Ui+ .

(Mgis Cas) Aliz
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