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Directional solidification and microstructure selection for
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Abstract: The examination on solidification characteristics of T+ Al peritectic alloys was dealt with in both initial
transient and steady state separately, the nucleation and constitutional supercooling of both phases at the solid/ liquid
interface and the effect of thermal gradient and growth velocity on the competitive growth of two phases were ana-
lyzed, and the condition of band structure formation and coupled growth was also determined. The composition
range and G/v ratio to form the band structures were determined. The competitive growth between primary and per-
itectic phases was investigated during the initial transient and their development to steady-state growth for TiAl al-
loy, and the interface response functions were used to determine the selection map of phases and microstructures at
different compositions and growth rates during the steady-state growth. The microstructures from directionally so-

lidified TiAl alloys with given compositions were in good agreement with the predicted selection map.
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Fig. 1 Schematic phase diagram for T+ Al alloy and

interfacial temperature changing with sample length and growth rate
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solid-liquid interface when second phase nucleation happens
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Fig. 3 Schematic illustration of peritectic

solidification process for TrAl alloy
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Phase |, molfll Lk K (] Ajoll N (100 922/- s (100 7Fn/1 - K) (103::10-/ sy Ke K- (Zi/o)*l
a 30. 418 1748. 23 16 055. 4 2.80 1.50 3.0 0.933 - 9.17
B 30. 418 1725.50 10 814. 90 2.80 1.50 3.0 0.907 - 14.35
v 30. 418 1698. 10 3367. 13 2.80 1.50 3.0 0.917 - 0.03
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(a) —As cast dendrite; (b) —¥TiAl in a matrix
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Table 2 Various interfacial morphologies and

phase selection corresponding to Fig. 13

Region State Phase selection Morphology
A T ransient B Leading Planar
@ Leading Planer
B T ransient
B Second Planar
@ Leading Planar
Cc Steady
B Second Planar
@ Leading Planar
D Steady
BSecond Cellular
& Leading Cellular/ Dendrite
E Steady
B Second Planar
& Leading Cellular/ Dendrite
F Steady
B Second Cellular/ Dendrite
& Leading Cellular/ Dendrite
G Steady
BSecond Cellular/ Dendrite
& Leading Cellular/ Dendrite
H Steady
BSecond Cellular/ Dendrite
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