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Abstract: Based on both the population dynamics model and the continuous variety of thermo- physical parameters,
supersaturation and nucleation rate, a model was developed to describe the microstructure evolution of hypereutectic
AFSi alloy during rapid solidification, and was solved for A390 alloy. The results show that, with the droplet size
decreasing, the average quenching velocity increases and the growth time, size and volume fraction of primary Si de-
crease. The primary Siof powder particle is extinct under a critical size, which result in the different microstructures
of various powder particles. The results of atomization experiments of hypereutectic AFSi alloys show a good agree
ment with the theoretical calculations. The model can be used to predict satisfactorily the microstructures evolution
of hypereutectic AFSi alloys.
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Table 1 Thermo-physical properties of A390 alloy

L/ T/ x ./ xy/ Ra/ Rg/ Dg/
(GJ*m 3% K % % pm pm  (Hm2 s 1
3.84 913 17.4 82.6 134 143 5500
K/ 0,/ cy/ c1/

(yJ* K™Y (mJ*m %) (Mmol*m~3) (Mmol* m™?)

13.8 93 83 11.57
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Fig.2 Change curves of temperature evolution of

droplets with different diameters
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