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Fig. 1 Li-S battery with chitin-derived biochar carbon as host material®®: (a) Discharge cycling properties at 0.1C;
(b) Galvanostatic curves, Ch294; (c) Galvanostatic curves, Ch440; (d) Galvanostatic curves, Ch540
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Table 1 Electrochemical performances of sulfur cathodes based on porous biomass-derived carbon

Initial Cycling Sulfur  Surface area Coulombic
Carbon ) Rate )
Sample capacity/ performance/ content/ of host/ efficiency/
precursor B _,. performance _
(mAh-g™)  (mA-hg™) o (m™g™) %o
(28] » 610
CH440/S Chitin 905 0.1C 60 338 90
(100th)
. 8 Aspergillus 990.3
SC/Ni,P/S1* 1347.5 0.1C 72.8 481.6 99
oryzae (500th)
19 Trichoderma 1043
TSC/SH 1282.9 0.1C 66.02 - 99
spore (500th)
(4] 717.5
PCKH/S Pomelo peel 1188.6 0.2C 53.8 1348 =98
(300th)
44] 750
ACF/S Pomelo peel 1258 0.2C 60 1533 96
(100th)
o 821
PRC/Ni/SP! Popcorn 1257.2 0.2C 76.1 1492.2 =99
(500th)
s1] . 875
N-AC/S Agaric 1104.4 0.2C 60 1568.2 99.5
(100th)
- Bacterial 1033.6
CNFA/SP? 1360 0.2C 75 610 99
cellulose aerogel (200th)
20 . 1048.6
CHPC/CoS,/SP"! Bovine bone 1230.9 0.2C 75.8 - =98
(250th)
» o 449
MCMs/SH0! Litchi shell 1520 0.5C 50 1438 -
(200th)
7] . 604
DPC/S Durian shell 895.2 0.5C 61.9 2816 99.3
(100th)
(32) . 804
C-HPCM/S Silk cocoon 1443 0.5C 48.4 3243 =92
(80th)
. 50 Aspergillus 995
ANDC/TiO,_/SP" . 1261 0.5C 74.1 - 99
niger (500th)
- » 1130
C-NC/GN/g-C,N,/S*) Chitin 1270 0.5C 78.1 341.9 100
(500th)
3 Jellyfish 517
NPAC/SP?! - 1C 72 2307 100
umbrellas (300th)
41 550
T-BC/S Bamboo 1295 - 50 791.8 =95
(150th)
. - Staphylococcus 569
SDC/TiO,/SP 1000 - 74 131.4 99.5

aurcus

(1500th)
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Research progresses on natural biomass-derived carbon applied in
cathode materials for lithium sulfur batteries

LIU Wen-hui'-2, LIU Mei-jia" >3, GUO Cheng', WANG Shou-juan"? LI Yong®>, KONG Fan-gong'>

(1. State Key Laboratory of Biobased Material and Green Papermaking,
Qilu University of Technology (Shangdong Academy of Sciences), Jinan 250353, China;
2. Key Lab of Pulp and Paper Science & Technology, Ministry of Education,
Qilu University of Technology (Shangdong Academy of Sciences), Jinan 250353, China;
3. Advanced Materials Institute, Shandong Academy of Sciences, Jinan 250014, China)

Abstract: Lithium-sulfur (Li-S) batteries exhibit high theoretical specific capacity (1675 mA-h/g) and energy
density (2600 W-h/kg), thus they are regarded as one of the most promising high energy density storage systems.
In spite of these significant advantages, there are several problems and challenges that have to be solved for Li-S
batteries. For example, the low electrical conductivity of sulfur, shuttle effect and loss of active substances caused
by the polysulfide dissolved in electrolyte, and the volume expansion during the delithium/lithium intercalation
reaction, directly lead to low coulombic efficiency, poor cyclical stability, rapid capacity decay, which seriously
hinder the commercialization of Li-S batteries. In recent years, natural biomass-derived carbon materials, as
sulphur-coated materials, have been widely used as cathode materials, showing excellent electrochemical
performance. Their natural advantages of high conductivity, large specific surface area, heterogeneous element
doping and low price can greatly improve the utilization rate of sulfur and inhibit the shuttle effect of polysulfide.
This paper systematically summarizes the synthesis and optimization of natural biomass-derived carbon materials
from diverse sources, and their applications as the hosts for storing sulfur. Moreover, the future research direction
of electrode materials is prospected.
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