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Fig. 1 Diagrams of (a) FSW and (b) cutting specimens
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Fig. 3 Macromorphologies(a) of cross-section of joint and inverse pole figures((b)—(i)) at different regions: (b) Al-side
HAZ; (c) Al-side TMAZ; (d) Al-side NZ; (e) AI/Mg interface; (f) NZ center; (g) Mg-side NZ; (h) Mg-side TMAZ; (i) Mg-
side HAZ




332 HEE 10

B4R, %%: 1060 £5/AZ31B BEF R4 8 FSW Bk A 2L b )y 24P fg 3075

N TMAZ 1)~ 35 dfokiRL A% AT LAGBs B 43 EL 7373l
576 um F174.9%, AHES GG BB TRV .
ME3(h) AT LA H, B0 TMAZ 530 HRH doRi F 2
INER AP IR A AL, MBS &8, P
By emRiRIA2 M LAGBs H 43 L6 73 7] B8 9 4.96 pm Al
38.6%. 5 HAZANA, TMAZ A 52 JBE 5 44 1) 52
W, SELEREFEETMEH T RAEBIEER, R
TMAZ K34 B 45 dh, 5> LAGBs ¥ 1 hy
HAGBs, M {#753 TMAZ ff] LAGBs [ 43 L &1,
ARLAIAL o

ME 3e)~)ME 4 a] LLE H, 7ENZ, $575)
/NS S ARORL L 58 U TR IR R,
e RDRLAE A LAGBs H 473 EEAHEBERA KR B 980/ o
5 TMAZ AHEE, NZ 58 1 A8 % A% R AR 58
XAERNZ I IR IR, RAETHER S
AL KB LAGBs #748 yHAGBs, FTbA
LAGBs B 75 EERTEEEREAIC, Ak i 41k .

2.3 AMEK

BS firom Sk AN A XSk il ¥ . AL S(a)
ATLVEH, B HAZ WA 5B A S M TLE
ARAEYPEZRN. FFEH, 80 HAZ & K 1)
(0001) f [T ASFAT T ND, X 5EA &R
R P — B (B 5(1)). Ko HAZ A2 3R 30 52 )
HEAEREBEAR, BAALSHERKRAHEA

Average grain
size/um
B 16.08
[ BAl
Bl 576

1.62

B 176

1.84
B 20
Bl 49
B 22

(a)

B4 B AIEE AN R X I bR A R ) 22 73 A

1k, BT UL HAZ i AR A BEAE AR A A KUY 54
S4 R AL, 4900 TMAZ () {111} %2 &% WD-TD
SRS T — € M (LB 5(b)), X Fhed R eTpe s
R TMAZ I S oREAE SRR R 5137 e 1901 5 50
. IWEIS(e). (FTLAEH, NZERRL 4 5
REE M AR, MaEdEH R {001} (100) 37
T, XRNZA; T RIZIKRIBIHA T, KA
T AL IS

M 5(e)~(h) i LA, 45/8E 5 1 X AT NZ
O 85 B R 2L A (0001 ) & 171 5 WD 7 1] fi % 1) 46
], TMAEAENINZ AT TMAZ, JERL T <0001) || TD F)
20 . KRISHNANMA N FSW i] LB AE— A
TR R RE, PRk R R B — A
FRTEBIY)E . PARK SEVZEHEIE AZ61 B &1l
MRS B, 2R A B 1) 2 ) 3 42 8 n i 7
B, U R R RL e TR e T, B
AR RIS Z BT R, ARG EMEZ
FIETY AT RE AR . ENZFG, B 07
FIECFAT T TD, MESEMINZ M TMAZ, 8i9)7)
Ji I REE WD 5% . hAk, PARK ZUHEINA,
EBEG & FSW AR, {0001} (1120) J 8 #% 2
AETFENIEFE R, X I 2 TR R BT 185 i
o 52 I H {0001 3 255 11 30 ABA-55 40 At 2 T F 55 ) H 1)
I3 A . ARIELE B 5 PARK Z U 7 45 R ) LF—
], NMZEREME, 58ESMFSWAHLL, /8

Percentage of
LAGBs/%

Fig. 4 Distribution(a) of grain size and misorientation angle(b) of base metal and different regions of joint
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Fig. 5 Pole figures at different regions of joint: (a) Al-side HAZ; (b) Al-side TMAZ; (c) Al-side NZ; (d) Al/Mg interface
(Al-side); (e) Al/Mg interface (Mg-side); (f) NZ center; (g) Mg-side NZ; (h) Mg-side TMAZ; (i) Mg-side HAZ

200} (a) —— AZ31BMgBM | (®) FSW Joint 1
—— 1060 Al BM
—— FSW Joint 1
s 160+ —— FSW Joint 2
= —— FSW Joint 3 :
% FSW Joint 2
S 120f
&0
£
—
g 80f
E FSW Joint 3
[8a)]
40}
0 0.05 0.10 0.15 0.20

Engineering strain

6 5 TD F fij i BERF 23k B 0 - A2 2 R 2 301

Fig. 6 Stress—strain curves(a) of base metals and joints and macromorphologies(b) after fracture in tensile along TD
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Fig. 7 In situ extensional displacement distributions of specimen in tensile along TD: (a) Before loading; (b) Initial stage;

(c) Middle stage; (d) Terminal stage; (e) Before fracture
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Fig. 8 Schmid factor maps at different regions of joint: (a) Al-side HAZ; (b) Al-side TMAZ; (c) Al-side NZ; (d) Al/Mg
interface; (e) NZ center; (f) Mg-side NZ; (g) Mg-side TMAZ; (h) Mg-side HAZ
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Fig. 10 Macromorphologies(a) of joint after fracture, inverse pole figures((b), (c)) and KAM maps((d), (e)) of fracture edge:

(b) Region [; (c) Region II; (d) Region I; (¢) Region II
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fracture
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Diagrams of joint failed near Al-side HAZ/TMAZ interface: (a) Before loading; (b) During tensile; (c) Before

Fig. 12 Fracture morphologies of joint: Macromorphology of Mg-side fracture; (b) Macromorphology of Al-side fracture;
(c) Micromorphology of region 1; (d) Micromorphology of region 2
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Microstructure evolution and mechanical properties of
friction stir welded dissimilar metal joints of 1060 aluminum and
AZ31B magnesium alloys

ZHAO Ya-dong"** LU Yao-wen' 2, HE Yang-yang' 2, CUI Hong-bao®>, WANG Shu-guang"*, GUO Xue-feng’

(1. School of Mechanical Engineering, Anyang Institute of Technology, Anyang 455000, China;
2. School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China;
3. Anyang Key Laboratory of Advanced Aeronautical Materials and Processing Technology,
Anyang Institute of Technology, Anyang 455000, China)

Abstract: The grain structure, texture evolution and mechanical properties of friction stir welded dissimilar metal
joints of 1060 aluminum and AZ31B magnesium alloys were studied by electron backscatter diffraction (EBSD).
The results show that the proportion of low angle grain boundaries (LAGBs) and average grain size decrease
gradually from heat affected zone (HAZ) to nugget zone (NZ). In HAZ, the grain structure is similar to that of the
base metals, while dynamic recrystallization occurs in the thermo-mechanical affected zone (TMAZ), forming a
microstructure in which coarse grains and fine equiaxed grains coexist. NZ is composed of uniform and fine
equiaxed grains. The texture of HAZ is similar to that of base metals. The {001} (100) recrystallized cubic texture
is formed in the Al-side NZ. At the NZ center, the grain orientation of magnesium grains deflects from the
(0001 || normal direction (ND) to €0001)|| welding direction (WD), while at the Mg-side NZ, the orientation of
grains is (0001) || transverse direction (TD). The tensile strength of the joint is 96.1 MPa and the elongation is
13.2%, reaching 95% of the tensile strength and 65% of the elongation of 1060 aluminum alloy base metal
respectively. The material softening caused by the decrease of HAZ dislocation density on the aluminum side and
the difference of grain size between HAZ and TMAZ on the Al-side jointly promote the fracture of the joint near
the Al-side HAZ/TMAZ interface.

Key words: Al/Mg dissimilar metal friction stir welding; grain structure; texture evolution; mechanical property;

fracture mechanism
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