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Fig.1 Schematic diagram of self-made simultaneous electric spray equipment of forming PDA
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Fig. 2 Schematic diagram of fabrication process of AAO-PDA-ODA
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Fig. 4 Linear abrasion test and wear mechanism diagrams for superhydrophobic surfaces: (a) Effect of wear distance
on surface hydrophobicity in linear abrasion test; (bl), (b2) Refers to SEM photograph of AAO-ODA before sandpaper
abrasion and after abrasion for 400 cm, respectively; (b3) EDS results of AAO-ODA corresponding to sample AAO-
ODA; (b4), (b5) Refers to SEM photograph of AAO-PDA-ODA before sandpaper abrasion and after abrasion for 700 cm,
respectively; (b6) EDS results of AAO-PDA-ODA corresponding to sample AAO-PDA-ODA; (c) Supposed mechanism of
PDA improved abrasion resistance of super-hydrophobic Al surface
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Impact resistance test of super-hydrophobic Al: (a) Change in contact angle after sandblasting; (bl), (b3) Refers to

SEM photograph of AAO-ODA and AAO-PDA-ODA after suffering from 0.49 N of sandblasting, respectively; (b2), (b4)
Refers to EDS results of AAO-ODA and AAO-PDA-ODA suffering from 0.49 N before and after sandpaper abrasion,

respectively
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Fig. 6 Results of adhesion test by ultrasonic treatment: (a) Wettability of super-hydrophobic Al surface after ultrasonic
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Construction of micro-nano hierarchical structured
superhydrophobic aluminum surfaces and its mechanical stability

LIU Jing', XING Min', LEI Xi-ping''?, GUAN Xiao-lin?, YUAN Hu-die'

(1. College of Materials Science and Engineering, Xi’an University of Architecture and Technology,
Xi’an 710055, China;
2. Shaanxi Key Laboratory of Nano Materials and Technology, Xi’an 710055, China;
3. School of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China)

Abstract: The application of superhydrophobic metallic surface in industry is usually limited due to its poor
mechanical stability. Herein, a new method was proposed to improve its mechanical stability evaluated by a series
of external force. Al alloy with hierarchical structure was fabricated by chemical etching and anodization method
in sequence at initial, which owned step-nanowire-nanopore ternary structure. And then, dopamine and NalO,
aqueous were sprayed on the hierarchical Al surface simultaneously by a self-made electric spraying equipment
and polydopamine was obtained successfully. After grafting low surface energy substance, octadecylamine, on the
above modified Al surface by Schiff base or Michael addition reaction, super-hydrophobic Al was obtained
according to FTIR and XPS analysis. In order to investigate its mechanical stability, a series of tests were operated
and the results show that the super-hydrophobic Al surface retains excellent super-hydrophobicity even after
friction for 700 cm with 360 mesh sandpaper or suffering from 500 g of sandblast impact. The results of
ultrasound treatment for 60 min indicate that as-prepared super-hydrophobic Al possessed significantly enhances
adhesion performance compared with that without polydopamine. All these results illustrate that the introduction
of polydopamine as double-sided adhesive between Al substrate and low surface energy substance can obviously
improve the mechanical stability of super-hydrophobic Al surface.

Key words: aluminum; superhydrophobic; polydopamine; mechanical stability
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