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Table 1 Merits and demerits of various synthesis techniques

R R 7T, XERIE R SRR i il & A
BB R EEAEER L AR T RIEE G
BHE % A & 7%, LR 0D~3D 3 B & 44 BHE
AT, AT — DI RAA
Z LA mTERE R BRI E S AR

1 RESEMHHENK

K EERIIET LLE REA GRS
BRIEYUKRARL, DN TR A . R1PRN
ERE BRI Al FEARTTH, XA T &
B S MR & BT IEAT T 2 MR . X875
LN GRS S

1.1 KERARFIRGE

TR IR TGS S G 2 T i I < s S A B
WA BITE L — 70 K #E S TR AR
AARRARF AL, AR SRR K I GE 2 AR K
Wo IXFNTVETT LA B R 45 i B AN % R 3
RIRPRIE . 728 B A B DU R S A AR AN = IR 22

Fabrication . .
. Merit Demerit
technique
1) Provide highly monodispersed particles with
controllable size and morphology
Hydrothermal/ ) . L
2) Large-scale productions possible Require high temperature and pressure
solvothermal ) . )
3) Produce high purity materials
4) No toxic chemicals involved
Chemical bath o ) ) )
. Large-scale production is possible Not applicable to all metal oxides
deposition
1) Large-scale production is possible ) .
) ) ) Formed dense film without using template, so
Sol-gel 2) Produce high purity materials o )
] challenging in producing porous films
3) Low processing temperature
Chemical o ) .
L Large-scale production is possible Difficult to control the morphology
precipitation
Electrochemical ) . L. .
. Uniform morphology can be obtained Large-scale production is not possible
deposition
. 1) Produce high purity materials
Electrophoretic ) . . ) )
d " 2) Applicable to wide range of materials (metals, Water electrolysis from aqueous suspensions
eposition
P ceramics and polymers)
Microwave- 1) Large-scale production is possible .
. o Difficult to control the phase and morphology
assisted 2) Reduce the reaction time
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Fig. 1

Schematic diagram of preparation of Y-Ni/GNS electrode(a), SEM images and N, adsorption isotherms of Ni(OH),

((b), (e)), Y-Ni((c), (f)) and Y-Ni/GNS((d), (g)) samples (insets are pore diameter distribution curves)*”
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Fig. 3

Formation process of flower(a), slice(b), and particle structures(c) of Ni(OH), at different pH conditions;

Corresponding SEM images of as-prepared samples are in the right side!>’!
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Fig. 4 TEM images of graphene(a), SEM images of graphene(b), pure NiO(c), and composite(d)©>*)
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Fig. 5 SEM images of Zn-doped Ni(OH), with various proportions!'®: (a) 0; (b) 5%; (c) 10%; (d) 20%; (al), (b1), (c1), (d1)

High magnified morphologies of (a), (b), (¢) and (d), respectively
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Fig. 9 Schematic diagram depicting formation of a-NiCo-DHS@NS nanocomposite(a), FE-SEM image(b) and TEM

image(c) of a-NiCo-DHS@NS nanocomposite!®®!
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10  FeCo,0,@NiCo-LDH ffill % i F2/~ % [ , FeCo,0, .FeCo,0,@NiCo-LDH [J FE-SEM 4 *"]
Fig. 10 Schematic illustration of the fabrication process of FeCo,0,@NiCo-LDH(a), FE-SEM images of FeCo,0O,(b) and

FeCo0,0,@NiCo-LDH((c), (d))**”
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Fig. 11 SEM((a), (b)) TEM(c) and HRTEM(d) images of NiMn-LDH nanosheet@Ni,S, nanorod hybrid structures*”
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12 AEE RT3 28 NiCo-LDH 44K 1 ¥ FESEM &)
Fig. 12 FESEM images of nanoflowers of NiCo-LDH obtained at different synthetic conditions®: (@) Ni:Co 1:1, 6 h, at
120 'C; (b) Ni:Co 1:1, 18 h,at 120 'C; (¢c) Ni:Co 1:1,6 h, at 180 C; (d) Ni:Co 1:2, 6 h, at 180 C; (¢) Ni:Co 1:3, 6 h, at

120 °C; and (f) Ni:Co 1:3, 18 h, at 180 ‘C
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Hydrothermal growth of
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Fig. 13  Schematic illustration for fabrication processt'®”
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Synthesis and application of nickel-based composite materials in

supercapacitors

CAO Yuan, LIU Jie, SUN Bie-min, WU Hong, ZOU Han-jun, XU Yan-qin

(School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China)

Abstract: Nickel-based electrode materials have the advantages of higher theoretical specific capacitance and

economical raw materials, et al. However, due to the lack of high specific surface area and relatively low

conductivity, their practical application in supercapacitors is hindered. Nickel-based composite materials are a type

of composite materials composed of nickel-based compounds and one or more different materials, which

effectively combine the advantages of nickel-based compounds and other materials, such as good electrical

conductivity and large specific surface area. They can overcome the shortcomings of a single nickel-based

material, achieve excellent cycle stability and higher specific capacity, and have broad application prospects in the

field of supercapacitor electrode materials. There are many ways to synthesize nickel-based composite materials,

such as hydrothermal solvothermal method, chemical bath deposition method, sol-gel method, chemical

precipitation method, electrochemical deposition method and so on. According to the dimensional classification of

nickel-based composite materials, it can be divided into four types of composite materials: 0D, 1D, 2D, and 3D.

The applications of these four types of composite materials in supercapacitors were mainly reviewed.

Key words: nickel-based; composite material; supercapacitor; synthesize method
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