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(HT) alloys Cr-57.5Nb-xSi(x=0, 5, 10)
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Microstructure evolutions and strengthening/toughening
mechanisms of ternary Laves phase Cr-Nb-Si(Al) alloys

XUE Yun-long', WANG Yu-xuan', SUN Hao-hua', YUAN Liang?, LI Shuang-ming®

(1. Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials,
Shaanxi University of Science and Technology, Xi’an 710021, China;
2. College of Bioresources Chemical and Materials Engineering,
Shaanxi University of Science and Technology, Xi’an 710021, China;
3. State Key Laboratory of Solidification Processing, Northwestern Polytechnical University,
Xi’an 710072, China)

Abstract: Two series of Laves phase alloys Cr-Nb-Si(Al) were prepared by vacuum non-consumable arc melting,
and various techniques including SEM, EDS, a Vickers hardness tester, and a universal mechanical testing
machine were conducted to study the microstructures, the mechanical properties, and the underling strengthening
and toughening mechanisms of these alloys. The results showed that, the microstructures of alloys Cr-45Nb-xAl(x=
0, 7.5, 17.5) evolved from primary Cr,Nb plus eutectic Cr,Nb/Nbss to full eutectic Cr,Nb/Nbss with increasing Al
content, whereas the microstructures of alloys Cr-57.5Nb-xSi(x=0, 5, 10) transited from primary Nbss plus eutectic
Cr,Nb/Nbss to dendritic eutectic. The eutectic within the dendrite was Cr,Nb/Nbss, while transforming to Cr,Nb/
Nb,Si,/Nbss at the margin of dendrite. The compression strength and fracture toughness of alloys Cr-45Nb-xAl(x=
0, 7.5, 17.5) decreased with increasing Al content, whereas increased firstly and decreased subsequently with
increasing Si in the alloys Cr-57.5Nb-xSi(x=0, 5, 10). The compression strength and fracture toughness reached its
maximum in the alloy Cr-57.5Nb-5Si and estimated as 2.5 GPa and 15 MPa - m'"?, respectively. The excellent
combination of strength and toughness of alloy Cr-57.5Nb-5Si originated from the synergistic effects of
precipitation strengthening, interface strengthening, solid solution strengthening, second phase toughening and
alloying toughening.

Key words: Laves phase alloys; microstructures; mechanical properties; strengthening and toughening

mechanisms
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