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摘  要：表面质量是冷轧铜带重要质量指标之一。为实现铜带表面缺陷的精准自动检测，首先对常见表面

缺陷进行分类，并制作了铜带表面缺陷图像数据集(YSU_CSC)；然后，以卷积神经网络EfficientNet为核

心，基于迁移学习策略，通过训练实验建立了冷轧铜带表面缺陷智能识别模型，同时与其他三种常用的卷

积神经网络缺陷识别结果进行对比。结果表明：该模型的精度较高，准确率达到93.05%，单张缺陷图像平

均识别时间为197 ms，综合性能较好，可以满足工程要求；最后，将该模型在测试集上的缺陷识别结果进

行可视化，分析了该模型对部分图像识别错误的原因，给出了进一步优化的方向。
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冷轧铜带是有色金属领域的典型高端产品，广

泛应用于新能源汽车、航空航天以及精密电子设备

等领域[1−2]。表面质量是冷轧铜带重要质量指标之

一，表面缺陷不仅严重影响产品外观与成材率，而

且还可能对下游工序的生产造成不良影响[3−4]。实

现铜带表面缺陷精确、快速分类识别，对于提高产

品质量具有重要意义。

目前，工业生产中仍大量采用人工目测的方法

进行铜带表面缺陷检测，这种方法识别精度低、稳

定性差、劳动强度高[5−6]。为此，国内外部分学者

采用传统机器视觉方法进行了相关研究。沈昱明

等[7]采用双阈值分割方法对铜带表面缺陷特征进行

提取，并设计了软硬件系统，利用Labview开发了

检测平台；张学武等[8]利用Gaussian金字塔分解和

Gabor滤波器，通过提取铜带表面缺陷的颜色、亮

度和朝向 3个特征，建立了马尔科夫缺陷分类模

型，实现了缺陷分类；李嘉惠[9]将自适应分割算法

用于缺陷图像分割，提取了缺陷的长宽比、周长、

面积、圆形度和重心这5个特征，采用单隐含层BP

神经网络建立了缺陷分类器，实现缺陷识别；孟繁

明[10]基于改进的Canny算子与形态学方法，提出了

MM-Canny缺陷分割算法，通过提取几何(面积和

长短径比)、灰度(平均灰度、方差、倾斜度和缺陷

区域能量)、纹理(角二阶矩阵、对比度、相关性和

熵)3类特征，建立了支持向量机缺陷分类模型，实

现了缺陷分类；ZHANG等[11]首先将铜带缺陷图像
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分成若干个子图像，再将子图像分为若干个小波单

元，以此得到缺陷图像的小波统计结果，实现缺陷

特征的提取，再采用支持向量机模型，完成缺陷

分类。

总体而言，将传统机器视觉方法用于铜带表面

缺陷分类与识别时，可以取得一定的效果，但也存

在一些尚待解决的问题。如图1所示，采用传统机

器视觉方法进行缺陷识别与分类时，一般需经过特

征设计、提取、分类三个步骤。其中特征设计是基

础，就铜带表面缺陷而言，常见的特征包括颜色、

亮度、形状、纹理等；具体采用哪几种特征，这将

对设计者的专业知识依赖性很强，通常需要进行大

量试错才能找到较佳的特征组合。为突出主要特

征，抑制次要特征，有时还会采用图像增强方法

(Image enhancement)，常见的图像增强方法包括去

噪、提亮、超分辨率、去模糊等。

简而言之，传统机器视觉是基于人为设计规则

的方法，具有很好的可解释性，但最终模型识别精

度的高低则与特征设计的好坏直接相关。当缺陷特

征可精确描述、缺陷重复率较高时，采用传统机器

视觉能够取得十分理想的效果。铜带表面缺陷种类

较多，通常根据缺陷产生机理进行分类，生产过程

中很难精确描述某一类缺陷的具体形状与位置，且

有些不同类型缺陷的外观形貌却具有相似特征，同

时生产现场的检测环境也是不断变化的，这些都为

传统机器视觉的应用造成很大障碍。

以深度学习为核心的人工智能理论与技术的快

速发展，使其在诸多领域取得了成功的应用[12]，这

为表面缺陷检测提供了新的思路及方向。如图2所

示，与传统机器视觉方法相比，深度学习的主要优

点在于无须通过人工进行特征设计，而是通过智能

方法自动学习图像的基本特征，并自动进行特征提

取与分类，特别适合于变量环境中多种类缺陷的自

动识别，具有较强的通用性和鲁棒性。

目前，已有部分学者运用深度学习方法进行钢

带和铝材表面缺陷检测。在监督学习方面，SONG

等[13−14]建立了热轧带钢表面缺陷数据集，提出了多

特征融合的卷积神经网络缺陷识别算法，实现了6

种常见热轧带钢表面缺陷的识别；SAIZ等[15]将传

统机器学习技术与卷积神经网络相结合，提出了带

钢表面缺陷自动分类方法，通过大量实验获得最佳

的分类器参数，完成了缺陷分类；向宽等[16]通过引

入特征金字塔结构，提出改进的Faster RCNN铝型

材表面缺陷识别方法，实现了铝型材表面 10种缺

陷的检测；张旭等[17]通过采用改变锚框数量的方式

改进了YOLOv3模型，提升了铝型材表面小缺陷的

检测效果。叶刚等[18]首先采用ViBe算法从图像中

分割出缺陷区域，然后利用中值滤波和形态学运

算，进行缺陷区域的准确提取，最后通过卷积神经

网络实现铝带表面缺陷的识别分类。在半监督学习

方面，GAO等[19]对NEU数据集建立了 PLCNN半
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分成若干个子图像，再将子图像分为若干个小波单

元，以此得到缺陷图像的小波统计结果，实现缺陷

特征的提取，再采用支持向量机模型，完成缺陷

分类。

总体而言，将传统机器视觉方法用于铜带表面

缺陷分类与识别时，可以取得一定的效果，但也存

在一些尚待解决的问题。如图1所示，采用传统机

器视觉方法进行缺陷识别与分类时，一般需经过特

征设计、提取、分类三个步骤。其中特征设计是基

础，就铜带表面缺陷而言，常见的特征包括颜色、

亮度、形状、纹理等；具体采用哪几种特征，这将

对设计者的专业知识依赖性很强，通常需要进行大

量试错才能找到较佳的特征组合。为突出主要特

征，抑制次要特征，有时还会采用图像增强方法

(Image enhancement)，常见的图像增强方法包括去

噪、提亮、超分辨率、去模糊等。

简而言之，传统机器视觉是基于人为设计规则

的方法，具有很好的可解释性，但最终模型识别精

度的高低则与特征设计的好坏直接相关。当缺陷特

征可精确描述、缺陷重复率较高时，采用传统机器

视觉能够取得十分理想的效果。铜带表面缺陷种类

较多，通常根据缺陷产生机理进行分类，生产过程

中很难精确描述某一类缺陷的具体形状与位置，且

有些不同类型缺陷的外观形貌却具有相似特征，同

时生产现场的检测环境也是不断变化的，这些都为

传统机器视觉的应用造成很大障碍。

以深度学习为核心的人工智能理论与技术的快

速发展，使其在诸多领域取得了成功的应用[12]，这

为表面缺陷检测提供了新的思路及方向。如图2所

示，与传统机器视觉方法相比，深度学习的主要优

点在于无须通过人工进行特征设计，而是通过智能

方法自动学习图像的基本特征，并自动进行特征提

取与分类，特别适合于变量环境中多种类缺陷的自

动识别，具有较强的通用性和鲁棒性。

目前，已有部分学者运用深度学习方法进行钢

带和铝材表面缺陷检测。在监督学习方面，SONG

等[13−14]建立了热轧带钢表面缺陷数据集，提出了多

特征融合的卷积神经网络缺陷识别算法，实现了6

种常见热轧带钢表面缺陷的识别；SAIZ等[15]将传

统机器学习技术与卷积神经网络相结合，提出了带

钢表面缺陷自动分类方法，通过大量实验获得最佳

的分类器参数，完成了缺陷分类；向宽等[16]通过引

入特征金字塔结构，提出改进的Faster RCNN铝型

材表面缺陷识别方法，实现了铝型材表面 10种缺

陷的检测；张旭等[17]通过采用改变锚框数量的方式

改进了YOLOv3模型，提升了铝型材表面小缺陷的

检测效果。叶刚等[18]首先采用ViBe算法从图像中

分割出缺陷区域，然后利用中值滤波和形态学运

算，进行缺陷区域的准确提取，最后通过卷积神经

网络实现铝带表面缺陷的识别分类。在半监督学习

方面，GAO等[19]对NEU数据集建立了 PLCNN半

图1　基于传统机器视觉的缺陷识别示意图

Fig. 1　Schematic diagram of defect recognition with traditional machine vision

2951



中国有色金属学报 2022 年 10 月

监督学习的带钢表面缺陷识别模型，并指出该方法

能够减少数据标记量，提高效率，适合于标记受限

的缺陷识别任务；HE等[20]采用生成对抗网络生成

了大量未标记的缺陷图像样本，并提出了一种基于

cDCGAN和Resnet18的多次训练方法，该方法提升

了带钢表面缺陷的识别精度。

综上所述，迄今为止关于铜带表面缺陷检测的

研究主要是采用传统机器视觉方法，但该方法极易

受光线、雾气和振动等现场环境因素的干扰，具有

较差的通用性和鲁棒性。另外，它能够识别的缺陷

类别较少，故实际应用效果不够理想。与传统机器

视觉方法相比，深度学习方法具有较好的非线性学

习感知能力和泛化抗干扰能力，能很好地克服传统

方法的不足。为此，研究一种适用于多类别的新型

冷轧铜带表面缺陷智能识别方法具有较强的实际意

义，对改善带材表面质量、提升装备的国产化与智

能化水平具有重要意义。

1　冷轧铜带表面缺陷

1.1　表面缺陷的分类及特征

冷轧铜带表面缺陷可能发生在冷轧、退火和清

洗等工艺阶段。通常在清洗机组的末端，采用多组

高速相机对铜带表面进行连续拍摄，数据采集过程

如图3所示。在实际生产过程中，必须先对表面缺

陷进行精准分类、识别和统计，后续才能制订有针

对性的缺陷控制措施，改善表面质量，提升产品

性能。

本文针对国内某冷轧铜带产线，经长期现场跟

踪、取样分析和技术交流，最终判定该产线需识别

的表面缺陷共有8类，分别为线条(Line mark, LM)、

黑点(Black spot, BS)、凹凸包(Concave-convex pit, 

CP)、边裂(Edge crack, EC)、孔洞(Hole, Ho)、虫斑

(Insect spot, IS)、起皮(Peeling, Pe)、脏污(Smudge, 

Sm)，这 8类表面缺陷的形貌如图 3所示。表 1所

列为 8类表面缺陷的具体特征与产生机理，由表

1 可知，各缺陷之间的形状与纹路等特征均不完

全一致，这对缺陷识别是有利的，但不同缺陷之

间又有某些特征是相似的，如边裂 (EC)与孔洞

(Ho)均呈现块状特征，这增加了缺陷精确识别的

难度。与此同时，这 8类缺陷的产生机理与控制

措施不尽相同，因此需要对每类缺陷进行精确

识别。

图2　基于深度学习的缺陷识别示意图

Fig. 2　Schematic diagram of defect recognition with deep learning
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1.2　表面缺陷数据集

在国内某冷轧铜带生产线采集上述8类表面缺

陷图像，经一段时间现场跟踪发现，线条(LM)、

凹凸包(CP)和边裂(EC)这三类缺陷出现的次数相对

较少，分别采集到157张、204张和231张，采集到

的其余类别表面缺陷图像的数量均大于300张。为

了保证各类缺陷图像数据分布均匀，本文根据图像

增广方法(image augmentation)，结合现场可能出现

的环境工况，采用表2所示的五种变换方式(添加高

斯噪声、添加椒盐噪声、旋转角度、亮度减弱和亮

度增强)随机对上述三类缺陷图像进行扩充，每类

缺陷图像均扩充至300张。此处采用图像增广方法

的主要目的是增加数据量，与前所述图像增强方法

的目的是完全不同的。

图像添加噪声时，假定原始图像为 f，所添加

的噪声为n，加噪后的图像g表示为式(1)。如果噪

声类型为高斯噪声，那么需要服从正态分布[21]，此

时噪声n的概率密度函数为p(n)，应满足式(2)；如

果噪声类型为椒盐噪声，其在图像中表现为亮暗点

状[22]，此时噪声 n 的概率密度函数为 p′ (n)，应满

足式(3)：

g = f + n (1)

p(n)=
1

2π σ
e-(n - μ)2 /(2σ2 ) (2)

式中：n取值范围为0~255；μ为噪声n的平均值；σ

为噪声n的标准差。

p(n)=
ì

í

î

ïïïï

ïïïï

pa

pb

1 - pa - pb

n = a
n = b

  其他条件
(3)

式中：0≤pa≤1；0≤pb≤1；若 a＞b，噪声 n=a表

现为亮点，噪声 n=b表现为暗点，a和 b取值范围

为0~255。

图像旋转时，假定以图像中心为固定点，原始

图像中的任意点坐标为(x0, y0)，将该点旋转 θ角度

后，其坐标变为(x, y)，两者之间的计算关系可表

示为：

é
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êêêê
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= é
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sin θ cos θ
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(4)

调整图像亮度是指对图像中所有像素点的

RGB值统一进行增大或者减小。假定原始图像中

的RGB值用Ω表示，Ω′调整之后的RGB值，则两

者之间的计算关系可表示为式(5)：

Ω′=Ω ´(1 + η) (5)

式中：η为亮度变换因子。

图4所示为本文制作的冷轧铜带表面缺陷数据

集(YSU_CSC)。该数据集中共有 2400张表面缺陷

图像，每类缺陷图像 300 张，原始图像大小为

200×200，经预处理后，数据集中每张图像大小统

一为 224×224。将其中 70% 作为训练集样本，剩

余30%中的一半作为验证集样本，另一半作为测试

集样本，训练集和验证集用于训练模型，测试集用

于检验模型的泛化能力，不参与模型训练。数据集

中各类缺陷图像的具体分布情况如表3所示。

图3　冷轧铜带表面缺陷图像采集过程

Fig. 3　Image acquisition process for surface defects of cold rolling copper strip: (a) LM; (b) BS; (c) CP; (d) EC; (e) Ho; 

(f) IS; (g) Pe; (h) Sm
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2　表面缺陷识别模型

2.1　卷积神经网络(CNN)表面缺陷识别模型

为实现冷轧铜带表面缺陷自动化、高精度识别

与检测，可采用传统机器视觉方法或深度学习智能

方法。若采用传统机器视觉方法进行缺陷特征的提

取与分类，模型不仅很难具有较高的检测精度，而

且很难具有较好的泛化及抗干扰能力。目前，人工

智能及深度学习理论发展较快，卷积神经网络在很

多工程领域取得了较好的应用效果，例如钢带表面

缺陷的检测、故障诊断和模式识别等[23−27]。为此，

表1　表面缺陷特征与产生机理

Table 1　Characteristics and generation mechanism of surface defect

Defect

LM

BS

CP

EC

Ho

IS

Pe

Sm

Detail information

Characteristics: Single or multiple lines appear on the surface, with continuous or intermittent distribution and 

different lengths.

Cause analysis: Defects or copper scraps are present on the surface of the roller or guide roller, causing surface 

scratches.

Control measures: Regularly check the roller surface for defects and foreign objects.

Characteristics: Single or multiple round black spots on the surface, usually single spot point is common.

Cause analysis: Inclusions or segregation of components occur in the cast slab, and these hard particles or 

segregations will flow to the strip surface with plastic deformation during the rolling process.

Control measures: Optimize the casting process to reduce slag inclusion and prevent the water in the charge from 

reacting with copper to form oxides.

Characteristics: Pits or bulges of different sizes on the surface.

Cause analysis: Particles are stuck on the surface of rollers, degreasing rollers, etc., or there are convex points on 

the roller surface, and pits or bulges are generated on the pressing surface during operation.

Control measures: Regularly check whether the rollers have foreign body defects and local convex points.

Characteristics: Cracks on the two sides extend from the outside to the inside.

Cause analysis: The uneven crystallization of molten copper in the casting process leads to cracks on the edge of the 

cast slab, and edge cracks are formed in the subsequent rolling.

Control measures: Improve the casting process parameters, check the working condition of the mold, and reduce the 

cracks on the edge of the cast slab.

Characteristics: Holes with different sizes and irregular shapes on the surface.

Cause analysis: Segregation forms oxidized hard points, stress concentration occurs near the hard points during cold 

rolling, and holes are formed.

Control measures: Reduce the cooling intensity, reduce the casting temperature as much as possible, and reduce the 

segregation and microstructure porosity during the casting process.

Characteristics: Most are embedded in the copper strip surface, with insect appearance.

Cause analysis: Flying insects are pressed into the surface.

Control measures: Improve the production site environment and strictly control the number of insects.

Characteristics: Serious upwarp appear on the copper strip surface.

Cause analysis: Oxide scales or folds on the surface of the cast slab, form peeling during the rolling process.

Control measures: Strictly control the amount of oxide scale on the cast slab surface, and regularly clean the roller 

and transfer roller to prevent copper scraps from pressed into the slab.

Characteristics: Irregular dispersive residue marks appear on the surface.

Cause analysis: Water stains, oil stains, emulsion, or other liquid residues on the copper strip surface during 

cleaning.

Control measures: Adopt cooling lubricant and cleaning agent with better performance, maintain the cleaning line 

equipment in time, and strengthen regular inspections.
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表2　表面缺陷图像数据增广

Table 2　Surface defect image data augmentation

Defect

LM

CP

EC

Original image

Image augmentation

Gaussian noise Salt-pepper noise Angle rotation
Brightness 

reduction

Brightness 

enhancement

图4　冷轧铜带表面缺陷数据集(YSU_CSC)

Fig. 4　Surface defect dataset of cold rolling copper strip (YSU_CSC)

表3　训练集、验证集和测试集中各类表面缺陷图像分布情况

Table 3　Distribution of surface defect images on training set, validation set and testing set

Dataset

Training set

Validation set

Testing set

Total

Defect sample number

LM

210

45

45

300

BS

210

45

45

300

CP

210

45

45

300

EC

210

45

45

300

Ho

210

45

45

300

IS

210

45

45

300

Pe

210

45

45

300

Sm

210

45

45

300

Total

1680

360

360

2400

2955



中国有色金属学报 2022 年 10 月

本文基于深度卷积神经网络，根据现场采集的表面

缺陷图像数据，建立冷轧铜带表面缺陷智能识别模

型。网络模型的一般结构如图5所示，主要由图像

数据输入层、卷积层、池化层、全连接前馈神经网

络层、输出层组成，其中卷积层与池化层的具体层

数需根据具体问题确定。铜带表面缺陷图像经过多

次卷积、池化、非线性激活函数映射等运算后，将

表面缺陷特征信息抽取出来，最后由全连接前馈神

经网络层和输出层计算出某张图像属于各类缺陷的

概率，从而实现缺陷的分类。

2.2　EfficientNet表面缺陷识别模型

目前，国内外已经对深度卷积神经网络进行了

大量的理论研究，且普遍认为网络的深度、宽度和

输入图像的分辨率是影响模型性能的主要因素。已

有部分研究针对上述三种因素进行了网络结构的扩

展，例如常见的 ResNet、DenseNet 和 MobileNet

等[28]，这些模型仅是在单一因素上对网络进行了扩

展，使其精度可以得到一定程度的提高。然而一味

地增加一个维度又会使网络模型的结构更复杂、参

数量更大，容易出现过拟合等问题[29−30]，不利于表

面缺陷识别模型的建立。为此，本文采用一种新型

卷积神经网络模型EfficientNet进行表面缺陷的识

别研究，该模型通过采用复合缩放系数对网络的宽

度、深度和分辨率三个维度进行结构综合扩

展[31−32]，使其在具有相同精度前提下，网络结构复

杂程度显著降低。缩放系数的表达式如下：

ì

í

î

ï

ï
ïï
ï

ï

ï

ï
ïï
ï

ï

depth:

width:
resolution:

s.t.

d = αϕ

w = βϕ

r = γϕ

α × β2 × γ2 » 2

α ≥ 1β ≥ 1γ ≥ 1

(6)

式中：d、w、r分别是宽度、深度和分辨率三个维

度的缩放系数；ϕ是资源控制系数，控制可用于模

型缩放的资源(计算力)；α、β、γ是可以通过网格

搜索确定的资源分配系数，分别给宽度、深度和分

辨率分配这些资源。在不增加模型参数量的前提

下，通过不断调整深度、宽度和分辨率的缩放系数

d、w、r，可使模型达到精度最优。

为了减少模型参数，提高计算速度，结合表面

缺陷图像的分辨率，本文采用EfficientNet建立冷

轧铜带表面缺陷智能识别模型，其结构由1个图像

数据输入层、2个Conv卷积层、16个MBConv移

动逆瓶颈卷积模块层、1个池化层和 3个全连接层

组成，模型整体结构如图 6所示。模型的主体是

MBConv模块，根据扩展比采用1×1逐点卷积改变

输出通道维度，经过一次深度卷积后，再利用1×1

卷积恢复原始维度，内部激活函数采用 Swish 函

数[33−34]。MBConv1 和 MBConv6 模块结构如图 7

所示。

图5　表面缺陷卷积神经网络模型的一般结构

Fig. 5　General structure of surface defect convolutional neural network model
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3　结果与分析

3.1　实验方法

采用迁移学习策略，通过进行模型的训练实

验，分析网络结构与参数对表面缺陷识别精度和运

算速度的影响。经过大量实验对比发现，首先采用

ImageNet数据集对模型进行预训练，使其达到一定

精度后，再采用YSU_CSC数据集对网络模型的最

后7层(3个全连接层和4个卷积层)进行再训练，此

时模型对表面缺陷能够取得较好的识别效果，训练

策略如图8所示。本文还采用其余三种常用的深度

卷 积 神 经 网 络 算 法 (VGG16、 MobileNetV2、

ResNet50)建立了相应的缺陷识别模型，用于模型

对比。

3.2　实验结果与分析

模型的训练步数(Epoch)为 2000，训练过程中

的误差损失(Error loss)和准确率(Accuracy)如图9所

示。由图9可知，模型在训练集和验证集上的误差

图7　MBConv模块结构图

Fig. 7　Structure diagram of MBConv block: (a) MBConv1; (b) MBConv6

图6　EfficientNet表面缺陷识别模型

Fig. 6　EfficientNet recognition model of Surface defect
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分别达到0.25和0.34左右，整体训练过程表现得比

较平稳，这表明模型具有较好的学习能力；训练完

毕后，训练集和验证集的准确率分别达到 0.93和

0.95，表明模型具有一定的泛化能力。为了进一步

验证模型的精度和泛化能力，采用该模型对“未见

过”的测试集缺陷图像进行预测，同时与VGG16、

MobileNetV2、ResNet50三个识别模型在相同测试

集上的表现进行对比，其结果如表 4所示。其中

VGG16、MobileNetV2、ResNet50识别模型的准确

率分别为 75.27%、65.83%、82.78%；相比这三个

模型，本文模型准确率最高为 93.05%。VGG16、

MobileNetV2、ResNet50识别模型对于单张缺陷图

像的平均识别时间分别为 2412 ms、165 ms、1205 

ms，本文模型为197 ms，与MobileNetV2相近。综
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图8　模型的训练策略

Fig. 8　Training strategy of proposed model

图9　模型的误差损失和准确率

Fig. 9　Error loss and accuracy of proposed model: (a) Error loss; (b) Accuracy

表4　不同模型在测试集上的结果对比

Table 4　Comparison of results of different models on testing set

Model

VGG16

ResNet50

MobileNetV2

Ours method

Accuracy/%

75.27

82.78

65.83

93.05

Recognition time of single defect image/ms

2412

1205

165

197
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合考虑模型精度和识别速度，本文模型是最佳的，

可以满足工程使用要求。

为了研究模型对缺陷图像的分类识别机制，本

文对测试集中的缺陷图像识别结果进行了可视化分

析。图10给出了模型对测试集中8类缺陷图像的识

别概率。其中，绿色柱代表类别识别正确的概率，

图10　模型对测试集中每张缺陷图像的识别概率

Fig. 10　Proposed model’s recognition probability of each defect image on testing set: (a) LM; (b) BS; (c) CP; (d) EC; 

(e) Ho; (f) IS; (g) Pe; (h) Sm
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红色柱代表类别识别错误的概率。由图 10可知，

模型对测试集中线条(LM)、凹凸包(CP)和脏污(Sm)

3类缺陷的整体识别效果很好，其错误率较低，分

别为 0%、4.44%和 2.22%；对黑点(BS)、孔洞(Ho)

和虫斑(IS)3类缺陷的识别错误率相对较高，分别

为8.89%、15.56%和11.11%。

为了进一步分析模型对缺陷识别错误的原因，

分别作出训练集与测试集的混淆矩阵，其结果如图

11所示。图11(a)和11(b)中纵轴表示真实的类别标

签，横轴表示模型预测的类别标签，对角线上的数

值表示识别结果的正确率，偏离对角线位置的数值

表示识别结果的错误率，图中颜色的深浅对应着正

确率的数值大小，从这两个图的对角线颜色也可以

看出本文模型具有较好的学习能力和泛化能力。从

图 11(b)中可以看出，缺陷之间识别错误的类型有

两种：相互型与单向型。典型的“相互型”识别错

误是黑点(BS)与凹凸包(CP)，这两种缺陷容易相互

混淆，但基本不会或很少被识别为其他六类缺陷，

相互之间的识别错误率分别为8.9%与4.4%，说明

这两种缺陷的特征相似度较高。其他识别错误主要

是“单向型”，即前一种缺陷很容易被误判为后一

种缺陷，但后一种缺陷却很少或基本不会被误判为

前一种缺陷，如孔洞(Ho)特别容易被错误识别为黑

点(BS)，错误率达到 11.1%，但黑点(BS)却几乎不

会被识别为孔洞(Ho)，表明数据集中的某些孔洞

(Ho)缺陷的特征比较接近于黑点(BS)，但黑点(BS)

缺陷的特征却并不接近于孔洞(Ho)。与此类似的

“单向型”识别错误还有边裂(EC)与凹凸包(CP)、

虫斑(IS)与孔洞(Ho)。从图 11(a)中也可得到类似

规律。

图 12所示为本文模型对 8类缺陷的类激活图

(Class activation mapping, CAM)结果，图中红色越

深的区域对于模型缺陷分类的重要程度越高。由图

12可知，模型对缺陷特征的整体识别效果较好，表

明该模型的确可以用于学习各类缺陷的关键特征。

其中，黑线(LM)与起皮(Pe)均呈现线条状决策区

域，但两者之间又存在显著差异，易于区分；脏污

(Sm)的决策区域相对于其他缺陷具有一定的分散

性，相对易于识别；黑点(BS)与凹凸包(CP)两类缺

陷均呈现圆形或椭圆形点状，相似度较高，容易引

起相互混淆；孔洞(Ho)缺陷的决策区域呈现不规则

块状，当孔洞(Ho)缺陷的面积较小且边缘较为平滑

时，容易被误判为黑点(BS)；虫斑(IS)的决策区域

也出现了不规则的块状，当腿部与翅部特征不明显

时，容易被误判为孔洞(Ho)；此外，边裂(EC)与凹

凸包(CP)缺陷的决策区域均呈现一定的辐射状，当

边裂(EC)缺陷较小时，容易被误判为凹凸包(CP)。

未来可以重点考虑增加缺陷图像数据量，并为缺陷

图像制订更加细致的划分标准，以此进一步提高模

型对表面缺陷的识别精度。

图11　模型对训练集与测试集的混淆矩阵

Fig. 11　Confusion matrix of training set and testing set by proposed model: (a) Training set; (b) Testing set
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4　结论

1) 结合实际生产需求，将冷轧铜带常见表面缺

陷划分为线条、黑点、凹凸包、边裂、孔洞、虫

斑、起皮和脏污8类，并在国内某产线现场采集图

像数据，建立了一套冷轧铜带表面缺陷数据集

(YSU_CSC)。

2) 与VGG16、MobileNetV2、ResNet50三个识

别模型在相同测试集上的表现相比，基于

EfficientNet卷积神经网络建立的冷轧铜带表面缺陷

识别模型的准确率最高，达到了 93.05%，单张缺

陷图像平均识别时间为197 ms，具有较好的泛化能

力，且运算速度较快，可以满足实际工程要求，综

合表现最好。

3) 在测试集上，模型对线条、凹凸包和脏污3

类缺陷的整体识别效果较好，错误率较低，分别为

0%、4.44%和 2.22%；对黑点、孔洞和虫斑 3类缺

陷识别错误率相对较高，分别为8.89%、15.56%和

11.11%。缺陷之间识别错误的类型有两种：相互型

与单向型，属于“相互型”识别错误的是黑点与凹

凸包，属于“单向型”识别错误的是孔洞与黑点、

边裂与凹凸包、虫斑与孔洞。

4) 类激活图结果表明，该模型的确可以用于学

习各类缺陷的关键特征。黑线、起皮和脏污的决策

区域差异明显，易于区分；黑点与凹凸包的决策区

域相似度较高，易相互混淆；孔洞、边裂、虫斑3

类缺陷易受特征影响，从而引起误判。未来将考虑

图12　模型对表面缺陷的类激活图结果

Fig. 12　CAM results of surface defect by the proposed model: (a) LM; (b) BS; (c) CP; (d) EC; (e) Ho; (f) IS; (g) Pe; (h) Sm
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从增加缺陷图像数据数量、细分相似缺陷图像和改

进模型结构三个方面来进一步提升模型的综合

性能。
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Intelligent recognition method for 

surface defects of cold rolling copper strip

XU Yang-huan1, WANG Dong-cheng1, 2, LIU Hong-min1, 2, YU Hua-xin1, 2

(1. National Engineering Research Center for Equipment and Technology of Cold Rolling Strip, 

Yanshan University, Qinhuangdao 066004, China; 

2. State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, 

Qinhuangdao 066004, China)

Abstract: Surface quality is one of the significant indicators of cold rolling copper strip product quality. In order 

to realize the accurate and automatic detection of copper strip surface defects, this article first classifies common 

surface defects, and creates a copper strip surface defect image dataset (YSU_CSC). Then, with the EfficientNet 

convolutional neural network as the core, based on the transfer learning strategy, the optimal cold rolling copper 

strip surface defect recognition model was established through training experiments. At the same time, it was 

compared with the defect recognition model established by the other three convolution neural network algorithms. 

The results show that the accuracy of this model is the highest, and the accuracy reaches 93.05%, the average 

recognition time of single defect image is 197 ms, and the comprehensive performance is the best, which basically 

meets the engineering requirements. Finally, the defect recognition results of this model on the testing set were 

visualized, the causes of the error of defect recognition was analyzed, and the direction of further optimization is 

given.
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