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Fig.1 Schematic diagram of defect recognition with traditional machine vision
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Fig. 3 Image acquisition process for surface defects of cold rolling copper strip: (a) LM; (b) BS; (c¢) CP; (d) EC; (e) Ho;
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Table 1 Characteristics and generation mechanism of surface defect

Defect Detail information

Characteristics: Single or multiple lines appear on the surface, with continuous or intermittent distribution and
different lengths.
LM Cause analysis: Defects or copper scraps are present on the surface of the roller or guide roller, causing surface
scratches.

Control measures: Regularly check the roller surface for defects and foreign objects.

Characteristics: Single or multiple round black spots on the surface, usually single spot point is common.
Cause analysis: Inclusions or segregation of components occur in the cast slab, and these hard particles or
BS segregations will flow to the strip surface with plastic deformation during the rolling process.
Control measures: Optimize the casting process to reduce slag inclusion and prevent the water in the charge from

reacting with copper to form oxides.

Characteristics: Pits or bulges of different sizes on the surface.

Cause analysis: Particles are stuck on the surface of rollers, degreasing rollers, etc., or there are convex points on

P the roller surface, and pits or bulges are generated on the pressing surface during operation.
Control measures: Regularly check whether the rollers have foreign body defects and local convex points.
Characteristics: Cracks on the two sides extend from the outside to the inside.
Cause analysis: The uneven crystallization of molten copper in the casting process leads to cracks on the edge of the
EC cast slab, and edge cracks are formed in the subsequent rolling.
Control measures: Improve the casting process parameters, check the working condition of the mold, and reduce the
cracks on the edge of the cast slab.
Characteristics: Holes with different sizes and irregular shapes on the surface.
Cause analysis: Segregation forms oxidized hard points, stress concentration occurs near the hard points during cold
Ho rolling, and holes are formed.
Control measures: Reduce the cooling intensity, reduce the casting temperature as much as possible, and reduce the
segregation and microstructure porosity during the casting process.
Characteristics: Most are embedded in the copper strip surface, with insect appearance.
IS Cause analysis: Flying insects are pressed into the surface.
Control measures: Improve the production site environment and strictly control the number of insects.
Characteristics: Serious upwarp appear on the copper strip surface.
Pe Cause analysis: Oxide scales or folds on the surface of the cast slab, form peeling during the rolling process.
Control measures: Strictly control the amount of oxide scale on the cast slab surface, and regularly clean the roller
and transfer roller to prevent copper scraps from pressed into the slab.
Characteristics: Irregular dispersive residue marks appear on the surface.
Cause analysis: Water stains, oil stains, emulsion, or other liquid residues on the copper strip surface during
Sm cleaning.
Control measures: Adopt cooling lubricant and cleaning agent with better performance, maintain the cleaning line
equipment in time, and strengthen regular inspections.
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Table 2 Surface defect image data augmentation

Image augmentation

Defect  Original image . . . . Brightness Brightness
Gaussian noise  Salt-pepper noise  Angle rotation .
reduction enhancement

1

LM

CpP

EC

LM BS CP EC Ho IS Sm
B4 A HLAR 2 1 G b 2 SR (YSU_CSC)
Fig. 4 Surface defect dataset of cold rolling copper strip (YSU_CSC)
=3 UIGRAE AR AR AN B v A SR T i s P A 175 L
Table 3 Distribution of surface defect images on training set, validation set and testing set
Defect sample number
Dataset Total
LM BS Cp EC Ho IS Pe Sm
Training set 210 210 210 210 210 210 210 210 1680
Validation set 45 45 45 45 45 45 45 45 360
Testing set 45 45 45 45 45 45 45 45 360

Total 300 300 300 300 300 300 300 300 2400
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Table 4 Comparison of results of different models on testing set

Model Accuracy/% Recognition time of single defect image/ms
VGG16 75.27 2412
ResNet50 82.78 1205
MobileNetV2 65.83 165
Ours method 93.05 197
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Fig. 11 Confusion matrix of training set and testing set by proposed model: (a) Training set; (b) Testing set
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(a)

12 AR 2 i R B PR S B 1 4 R

(b)

Fig. 12 CAM results of surface defect by the proposed model: (a) LM; (b) BS; (c) CP; (d) EC; (e) Ho; (f) IS; (g) Pe; (h) Sm
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Intelligent recognition method for
surface defects of cold rolling copper strip

XU Yang-huan', WANG Dong-cheng' 2, LIU Hong-min"?, YU Hua-xin'-2

(1. National Engineering Research Center for Equipment and Technology of Cold Rolling Strip,
Yanshan University, Qinhuangdao 066004, China;
2. State Key Laboratory of Metastable Materials Science and Technology, Yanshan University,
Qinhuangdao 066004, China)

Abstract: Surface quality is one of the significant indicators of cold rolling copper strip product quality. In order
to realize the accurate and automatic detection of copper strip surface defects, this article first classifies common
surface defects, and creates a copper strip surface defect image dataset (YSU_CSC). Then, with the EfficientNet
convolutional neural network as the core, based on the transfer learning strategy, the optimal cold rolling copper
strip surface defect recognition model was established through training experiments. At the same time, it was
compared with the defect recognition model established by the other three convolution neural network algorithms.
The results show that the accuracy of this model is the highest, and the accuracy reaches 93.05%, the average
recognition time of single defect image is 197 ms, and the comprehensive performance is the best, which basically
meets the engineering requirements. Finally, the defect recognition results of this model on the testing set were
visualized, the causes of the error of defect recognition was analyzed, and the direction of further optimization is
given.

Key words: cold rolling copper strip; surface defects; EfficientNet CNN; transfer learning; recognition model
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