HI2EH 10
Volume 32 Number 10

TERRERFR

The Chinese Journal of Nonferrous Metals

2022 £ 10 H
October 2022

DOLI: 10.11817/j.ysxb.1004.0609.2022-42940

Cpy g a0

EEERRERRITARNMRER

Bk, B, $hiEE, W%, TXT

(RiEEZIE RS MRREES TR R, BEeR %R ERK TEMTH O, B 200240)

B B AU NBEEM R RS R AR ST VRN IR 7B e R SRBE LB, SRR X
B e AN BE R PP VAT T 845, BUR VAT 7B T . BERRGT S AR
L A AL & e RN B & i R SRR TE RO RE I, 5 7 AR G B B 1 < 1) MR SR B AT
N, NHESBE G AT TR AU R 3 B 18 S 4

KU B RUANLEL SURRRRIE; SRBENLEE; SILRR

XERS: 1004-0609(2022)-10-2857-19 FESHEES: TG146.2 XRkFRERS: A

SITAg=: W Uk, VL, SRR, . BE S B AU AR AT BRI S SR (D], R A B R 2R, 2022,
32(10): 2857-2875. DOI: 10.11817/j.ysxb.1004.0609.2022-42940
HU Bo, LI De-jiang, HAN lJia-xuan, et al. Research progress on ignition and combustion behaviors of magnesium

alloys[J]. The Chinese Journal of Nonferrous Metals, 2022, 32(10): 2857 - 2875. DOI: 10.11817/.

ysxb.1004.0609.2022-42940

BERISEE N 1.74 g/em®, ZIREFREERI2/3, K
EEER2/5, NEEER 14V, BEA S NERCMN
MR & B A RE, HAEIERIRER BT
BRI R U & RN AT 5. X & BONTE
“BLEE LT WAL AUR A, LR TR AL R
1 kg, HARHTERAT K15 %G ARRES
b1 kg, IEECKHET IR 6 & TR 50 kg, HE
THT T #5% P 485 10 5 Bl vl ek % 100 kg™ FERR 2SR
UL FH B G 4 SR 1A B R 20 AT DASE I R AT B
RE A B AR T DL R R I 2 2 B A, 7 R ARl
SR 4 SR IR A T 48 A VR AR U S [
G EM 1005, BFFRY, AT R AR
B 454 g RING VT, 1 WAL EZ°8 300
EI6, MR FHL 2283000300, fEMTRA b

E£mMB.: EZREHEKEL(J2019-VII-0003-0165)
Wi HER: 2022-02-07; f&ITHHER: 2022-03-08

£1°430000 35 ¢,
BESENMTRSENHAETF 2R, L
Ay R A G R b R R UG KL SR B AR
S0, ] R G v R JE R A 0 S e, AT R
FH AL R )45 38 1 e )i 52 2% 0 R shATL B A ATL I A
AHARSE, IR N B S S HE LRSI i
MR BN, BRESEHAIE 2N, HHAE
B FH A2 U 1 S bR ST R AN S, X EEEZ IR T
FL il e 2200, AR RE 7 5500 K G RV AR R AT
Horb G R R 2 D E R M . 2011451 H 1 HAR
B — 38 AR R I AT I B B K, 3G R
3ANBET:, 43 N2 g B K R AT g
P — CHLRBINLRE, —R8EaeR TS
‘AR KK FAE19644F, 32 [F BT 2= 5 2R
(FAA)BRRTH 73 85 6 4 10 mUR SR B R VR aEAT T 0

BIEMEE: B, BIvFs i, it mif: 13918235110; E-mail: lidejiang@sjtu.edu.cn
VNG, Bz, fid; HiE: 186021088705 E-mail: xqzeng@sijtu.edu.cn



2858 T A e E SR

2022 410 A

F, TGN EES S F T2 e A () ) 28 AEAERICOR
RS T AL 2R 4. BEAE FHIREE G & ny i i, HEAA
FAABUH 722840, (H28A &M a2 n
BB R, LE AR HUOR T NS
SR EEHEIEM. N T IHBR AR <8
K7 IR, KB A S R LS R A S
AT SR AR e s P TR A A L

HAN £ CZERWINSKI!''fil TEKUMALLA
SV R R G R SRR It AT R,
AMFAEN T35 B A TG S 0 RUHLEE, VR4
ST B S R AR R 2, HE R T
HETuEN RBRIR BRI (HARA TR RGeS
B G e R A G B A AL, A R S P
TR A AN R T B L2 o LERT N AR I HE A
by RSCEER T EESSEA SR, B S
THHRBCEERRL oA LA T B A A H
IR BRIE AN G APE VAL ik, g TG & R K&
BRGERISZM R 2R H A R 1 A s, IF &
G SR T e R, Hrh, BEEe s
TR B SR AT AL B 38 7y B2 BT [ A R A RS 0
R KIAFE R L . R TR R k-n RIS TP
il 77V oy 32 By e S N AR R R A ) AR
PERFFS, DASCHETZ SRR B K BRI 4
AR IR @ RPN ey ot SR T W - AL P et |
FEZ NIRRT ESINRR R, DL
FIRSE BPERT . SEAEE . AR S5 N
RI2 . ARLEEIRN T RS S R IR e
VAL EE & S T A R T BeAEAE RS, BT LS
AN A A& = Y i

1 ZEE R REIE

Y R R ey e wlii e 1 NI N W (T
braE KR 2 0073, U AR R G R
"M AR, TERREEEEEME. T
T AL LA 22 S PR [ P ekl R R R B SRR B 15 42
R BRI R HEAT fT BT o

L1 Bl R pEER

FE PR B R R K, AR #47 sUBLRR I O
EM, AR RHE S SR REEON R A, 2
VUSRI [ AR AR 52 I8 s R R i S s R i

FEIY N=ANERSY

1) i AEANFEAIRRRSINAT, AR kL&
T P S T v 224 Pk B ) 1 A AR B BT
(B A A b T TP 6 A I 7 A mT R I S . o488
HBEME, AR X N T2 5 TR TR L
Mg 28R

2) k. A R BT P A I AT S A
MESIRE, Y BE KB STEEE S
TSP WO R BN Mg 28R 5 I R TH AL
B, SR e 52 IR Y AN KA .

3) k. ST RE, RERRMER A S
PR UK RIS R AR RS Tk T B R R
W) 75 B T R PR VR A MR IR L P 4k R T i 1) 3 B R
BEEA 2RSS, ZBERRE TS T SRR .

25 HLRETY BV [ (AR A RL AR S s R AR S S A
fifts BERCA R R =ANER gy, AR R A KN T £,
R R Sy =305 B 75 I [i) 2 20l
L=t i+ L pem (1)
e o K ] AR N P SRR T P 75 22
(IR ]; ¢, A ATAME SR 5 B RIR A Y B e A
KIGAEFIT T B A] s 2, A2 ATBRIE R A i ik
P5 SR B AR S IR B R T T A S S (]
—AEH T, XA SR EEE S Sl e, 1
AR Mg Z8 S5 2SR A, 3 B0 8] DA R K 55
RS T 5 LA 25 S5 I B T 289328 /8 46 A e il 4
P ORL 2 T i ) BRI FE T, B 7 2 (R e (R, i
ALK 2R S BRES TR R4k -
te=t,, )

KK TR I, BG4 AR IR J5 A
BER I R AL TR 2R ST B, X AR A
AR A BAAFAEF - T4y HOEIE S fe, 8675
S RO PRI B DLk ) SRR . AEAE X R R T
5, SRR ARE

[i] R BE B AT RME R SR 2 K 2 A1 BE A A 2
(R AL RS, AYDIN Z2I8 R 58 T Mg il O, 76
WEmRMEE N RAESMRMNISRE, HEMTIR
S IRHLER I s . W L), RRERRIR
T AL 218 R B B NI I 0, AT S5 303 T R
MFFSL Ty, T S BER T R B A A . |
by, BEE SN T, Z2ROMES
BURERS BRSNS, TEREESEZE, MR
(A S 2 AR IR K I E MG R T . MR



#3255 104 Bl 5 A SMRIRBT IR TR 2859

Mg (liquid) Oxide film

Mg (solid)
LLLLL

@
Mg vapor

/

r \TT/\\TT}\T

RVETY

7
L/\\ /\

7

Oxide film

Mg (liquid) ) Fissures
(©
1 gL s R AR L)

Fig. 1

Oxide film

Mg (liquid)

Mg (solid)
LLLL L
(®)

Y
Mg vapor
TTTTT/TTTTTTTT

Oxide film

VaVAVE

Mg (liquid)
(d)

Ignition mechanism of Mg by oxidation™: (a) Local melting; (b) Surface melting; (c) Small amount of Mg vapor

breaking through oxide film; (d) Large amount of Mg vapor breaking through oxide film
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Effect of temperature on incubation time
[32]
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Effects of ignition test methods on ignition
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[ p ML S R, MBI SRR BUEL
THRLEBE, WoPRLEs BEROR, L EARRE AR TE E
ARG AR R T PR BIRCTAT, RN &/
MABBARI R PO IA R G 3 R . B e
AL A RME TR R 1 KBTI ) #v, okl LG
RESEROR,  FLAE O E S AR IN BT %o i B AR A
P EREE . R 1 PR g T LR A8 B #
PE R HLN, W LUE B Cu AR R R OR, X
BT HBEMERE .. RE L& SRR
e AL SRR R, HEFEEK, SH
PRV REOD AR, Mg SRRARETE, (HHEE
MECHRR AR, LR RN NR TIET]
DLE H, Tifl Mg (3B REREUS, SrEmi =
FRAIEA HIL “BRK” A1 “BEk” [TTRE. AN
BE SR RVIIE RBASAE, A FEEES SR
WRBR A —FE, (HHRTIEERA R TS S IHE
RE RGN T HRIE -

R R AR R B A

Table 1  Thermal inertia comparison of common
metals®~® (Thermal inertia, J*/(cm*+K?+s™"))
Cu Ni Al Fe Ti Mg
15.6 4.6 2.8 1.9 0.9 0.4
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S G 1) RUBR R B R 1 5 A A B S A O
B 2 FLIEA TV SR HeAA, TSR 80
1) A ) T LA L B 2 A0 HE R Mg R A B
T RESR fOBRES ] o HeAh, JERTERREEZ g fE
S, TR R R R AR R
TR, IR R SRR POE I B
AT DATHAS 8 & S IRy e, AT 4a 45 4
T it PR BN (]
3.4.1 ALY R

BEAEEM s S R B, SR
() A A B 3R T S O A ) M BRI 4
R — DR B T 3 (5 2 4 i A A OR3P 1 B 2 1) AL
i, X4 RMSEI K2R T & et —MIEN
T, BHEFENA SRR LL T Mg AR A hix
— %A, BfEmRALEREY, S&TEME
MgO B2 75 A T H B REAR 1L AG<0):
aMgO+bM—M,0 +aMg (10)
e av bR ER. L M0, EEES &b
MR Z AT S50 T MgO B, T EIR & Ak FHAS
SRS,

FL LA SR —EELT Mg u Rk A
A BA R TRV S A & H /b &1 Be
2 LI WLt R S T Rl Be A 2 14 1 B AR
AN X — k. HUZESHRF R L R ER, &
S Be 5 MgO S b (L= (1) (1) 35 45 87 5 B RE AR 1L
AG>0 (WLF(12)), HILAMIRBEHEBNE ORI P R
IFEE

MgO(s)+Be(1)—BeO(s)+Mg(l) (11)
Apeofwm
AG(T)=AG®(T)+RTIn aag) (12)

o AGE NARAEIRAS I35 4 0 el g AR Ak . 1
TAN 25681 CZERWINSKIC ) A 31 1 AHALII B 52
CZERWINSKI'HA A IR & 1 7% 14 70 | A 2 T8 8L
RIMHPSE, WA 2 R ALY MgO 1 & 7t
MR LE T Mg i — 25 [ 4 6k

INOUE 25181 QIN Z5[%Vf1 WANG 257 % 3 7E
BA4&d, CefCasmEmIFAL Mg OB,
BV F 0t 82 77 #2 2 (10) 19 75 A5 B 3 B BE S 6 AG>0,
{H Ce Al Ca (AL 5T Mg SR B Ry . 24
Ce il Ca IR FEAL T-PATIR FERT, MgO ST CaO il
Ce,0, 1. TM4HMNE MgO (2L ok i 48 K B (1) Mg

HAEREEELE LA CaflCe, BijEENEAEK
(¥ CaO H1 Ce,O, 7 F] T fr 47 Mg & 44 Jf: ik2 21| FH A
fEH.
342 EACREEUE

SEA IS P AT ] PILLING 25742 H ) P-B L
Rop) HHATHT B, Ryt &)@ 5SELGES BRI
A LIRS T R S AR AR S B AR 1Y) 42 AR AR
Z b

V. Mp,,
Rpy= -2 = =P 13
o VM mp ox ( )

e ¥ RERBEMIIER: vV, 2R BEY)
FrEFER B Mo REMI T E: mA
H TR e 8 S & B R . py M, 73 0H
SIRMEBANDNEE . FFRRN, S8R
Ry KT 1 H/NT 2 BRI IR ER- . 2Ry
ANTLIS S AR RO R AN R AT A B A, AR
I AR AR B IR SN . MRy KT 216,
A B AR T DU 5 e, (HR S AR
WM, SFEEERR, #imeEa s R £ .
x2guit 7 HE N REAYI R, T, Horh MgO
(1) Rpp 9 0.81, MUHAE =il T TGV SR FE A A
WEM . RZHM LA R, HRT 1, #h—
R LB G S I B A ROR # LA i o fE AR A
&, CaO ) Ry 4 0.64 ZAHXT T Ca R UL, TMAERS
WHNTBEE SR E R, 755 2 BB Mg 2k
). INOUE Z58™ 8 i1 51 ) CaO/Mg-Al-Ca 1] Ry
N7, XMW IELF AR T A 40m Caxt 86 & < Bl
A RRAERT T, TG &, A2
BRI R, 1T A2 AR 2 BT i 2
HE. MBS Erh, HERmEWERZ a4E)1
JZ T DR B ) B R A A 2 R A AR
Ry E 12 2 MR EZE. oh, HHBMITERSE
BARET, ] A2 HoAh Ry BRI S AL W A R AE
MgO 7= Brh, AT BR3P R4 A

R2 HNEEANN Ry T
Table 2 R, values of some metal oxides!* "

Oxide Rpg Oxide Rpp
CaO 0.64 AL, 1.28
MgO 0.81 BeO 1.59
Y,0, 1.13 ZnO 1.62

Ce,0, 1.16 Cr,0, 2.02
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REUT, T BHA SR & < 1 AL 2 RERE A RUOR AP R 1K,
T AE A AR AL O KSR ek B OR P 1
H. B2, MERENHE ST, R R T
S TR 2 e P BB 2R PR, T R 2R R AP 1
o AR H BA R IR R A8 N TE R 14 P
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FRecsefe, HRERNEERENE, ZENE
AR BIR T EH 3B B B S e )E
TESMIMEVIE VR T I a4 & 3R R “ s R,
HEMAE A RDIR A s 28 =B B A it )
BRZR BN B S T 3 ey A ) 3 3 s 38 R 1O
kB, T AL 2 AR A A A R
k. G SRR, BUR A AR B
AR SE, BeE BREMRAR TR K, SO AR IR
A RURIR A ik

B &M s R R AR S A RS RE, Ti
Mg 5 O MM FEZAMFIER: —& Mg IR b
BT BERTS O &M, —R&MgAAMEZI

Compact
layer
(a) oA
Substrate
Nodules

© /?

E10 AFEF B MgO 580

(b)

Z I iR IS R E AR R R E A A E
WAL B . TEVIIR B 1, HAEE
HARYEM, Shrr £ 22 Mg W f gy i 2 40
KIS O B, AL G BE A b B, F %
e Mg S HAEY BB /MRS O )R M
CZERWINSKI® 8 75 7= S Al 5 1 A [ 3 FE
NAZOV I E N Z, HAREW: IR RC,
FO 4 S WAL IR, X RN AT A A Bk
AL JZ RERT AR BRI R E s 5 RS
& HVEACAL T AR RPIRAS, Bl (] A e R 2
HIUR ke iR R s, RS T
H e E AL, HIHIE B AL 2 FEA R RE 1 2 i
(Rdk s, — BPE T RSN 25 R A s A0 B
Fo XN L & T BAH L5 BB S i T IR
A, TS R LG [ A R B B R R B B s M,
KRR R A LS By, (A3 AR 25 5 il
24, MM InE E AL BEREESS, hah, Mg B W
(P RN 78 SRR, 3 v A P R AR ot P 7 A K
B Mg 2, XL Mg 2R EE = AR
(T, B 5 s A 2 R 24 AT 185 K SRR
Koo MERUE, X FibRES, BAR,N122Z
8] R S A I B A B RSP AE . T T30 1
B, S SR A AL B EL A AR B 1 ) 2 M BT
TAN 258G IUTE AZ91D BEA 4 F I Be AJ DA 3
AR IR, i3 (Mg, Be)O A AL EA

B HIT R, NI E T AZ9ID 1) BRI FE .
Ridges
Metal Oxide
Loose
structures

Fig. 10 Schematic diagrams of MgO morphologies at various stages®®": (a) Compact layer; (b) Transient to oxide ridges;

(c) Growth of oxide nodules; (d) Loose scale structures
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CZERWINSKI Z¥1\ Ry S Ak A7 78 — 2 1 I 5 )&
B, AR, BEE N RN IR,
1B R 2 2 AL, T PR AR T B A & 1 AR

L,

35 AENE

G REHESEAREE., R EEEA
BRUL R B (R 7, Ga eI &
Bt AR R B LA 1) T R JE E AL
EY, ABTE RS RO PR AR . 2) W& T
TR EEEE NG S, R EEN A
PRUGEE s 3) LU AR Ry AR S SE 1) 5 A1 i H
H B8 GFE, XA BT Ry 12 51 2 1~2 2 [8] DL e 42
1 AL SO, GFE R 70 3 P R0 & 4 U R L
4) EE R SRR R BRI R R R OK
AR R KT T8 o

ZHTHI T I AR T A E&m RN
BG4 RUBRIR R B2, BOE I RO LT & AR
HNLEEH AT B4, R3IDG THEEE&PE A4St
FXHERTE SRR ER W, FESRNLT
JLK

E—HKE AL Zn, Cu. Fe. NiFEL[FH KA 4
AR FE R T ER > 00100 g LT DR 4 ot T IR
H& R AT PRAICEE & S IR S, M & &
() UL s S0 72 5 T R S ) B8 o T A A

R3  BEIURNESES S RURIR L

PG S RMAM B IELL:, 2 P& 6 1) U
T o ABA R A T Bl 5 Al Zn o ER G
H5 R A [ B Mg AR, T s n] R AE s PR
FEHIE R ALO, %5 Ry KT 1 IS, B TIER
B R v WA T v RUIR . L dEAS
AZI91PIHE 520 “C e I i A B2 v s R IS R £ Dy
1500 s, 171 [F] ¥ 4 Ak 2 /5 He s MR IS TR) 38 17 3 —
%, ART6 I 28 b B 5 I (R RN BRI — 5y 22—
& Be. Ca. SrESEEEEA SRR
ER ez, RAHFEREEEZETRAEAR
SRR E R, EEAEEP LT Mg50
SN B S 5 MgO S5 5 O S I8 12 B0 4
IR A B, T & e PR RRE 7). HEhiE
5 pg/g 1 Be 1] AR K2 i B & I BHIARE /T . £
AZ91 B A AN N 0.3%(J 2 4 $0)Be f# 1] 2
HBIRMBESG SRMENEMM . & BeBEA &R
AR Z NI RS, HAh A E R~ MgOo, TN
JZ72 MgO M1BeO A E &)=, w2 A UAE N
8 Mg> ¥ U1 B5f 2 . CHOI ZU 2 338 Fx ¥ n
0.27%~5.22%( it & 7 H0)Ca 1] LUK AZ91 85 41
PRI R = 2 650 C
F=RRRETRP ", AR A )
WEBR B FE RN, AT NP 55 —2HH La. Ce.
Nd. Sm. PrflEu%$# RE juRA N, 5 Mgt
b, HAMREEE. #Fla, XFFIX4 8 EuflLa,

Table 3 Effects of alloying elements on ignition temperatures of cast Mg alloys

Alloy .
element Effect Mechanism
All6291-94] Reduce The formation of low melting point Mg,,Al,, phase
Znl1- 95791 Reduce Low melting point phase; increase in Zn-containing inclusions
Cul'¥ Reduce Low melting point phase
Fel'™ Reduce Impurities
Nil's] Reduce Impurities
MnP* Reduce; increase No unified conclusion
Bel?7-100] Increase Surface enrichment; BeO promotes the formation of dense oxide films
Call01-110] Increase Surface enrichment; CaO promotes the formation of dense oxide films
Syt103. 1] Increase Surface enrichment; SrO promotes the formation of dense oxide films
Increase first The solid solution formed at low RE content helps to form a dense oxide film and
REB# 1127119 " increases the T, ; while the formation of second phase at high RE content results in a local

then reduce

solute depletion zone and reduces the 7, . The critical value is related to the solid solubility
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Fig. 11 Two kinds of oxide film structures formed on Mg alloys with active element (AE)addition!®”: (a) AEO located in

outermost layer; (b) AEO located in inner layer of oxide film
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Research progress on ignition and combustion behaviors of
magnesium alloys

HU Bo, LI De-jiang, HAN Jia-xuan, ZENG Xiao-qin, DING Wen-jiang

(National Engineering Research Center of Light Alloy Net Forming, School of Materials Science and Engineering,
Shanghai Jiao Tong University, Shanghai 200240, China)

Abstract: Magnesium alloys, the lightest metal structural materials, have broad application prospects in
automotive, 3C and aerospace due to their high specific strength, high damping, and excellent casting
performance. However, the characteristics of easy ignition and flammability have greatly restricted the application
of magnesium alloys in the aerospace field. To overcome the existing barriers, a breakthrough must be made in
understanding and regulating the ignition and flammability characteristics of magnesium alloys. This article
elaborated the ignition and combustion mechanisms of magnesium alloys from the aspects of ignition theories and
combustion expansion models; then summarized the evaluation methods of ignition characteristics and
flammability characteristics of magnesium alloys; finally analyzed the effects of atmosphere, test methods,
geometrical size, thermal inertia, oxide film and alloying elements on the ignition and flammability characteristics
of magnesium alloys. It aims to systematically understand the ignition and combustion behaviors of magnesium
alloys and provide theoretical support for the advancement of magnesium alloys in the aerospace field.
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