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Influences of gas discharging grooves at bottom of prebaked
carbon anodes on bath flow pattern in aluminum reduction cells
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Abstract: Simulations on the bath flow fields around a prebaked carbon anode with gas discharging grooves at the
bottom which could be applied on aluminum reduction cell was conducted. The results reveal that with the help of
the grooves, anode gas discharging is facilitated, residence time of bubbles in the interpolar gap( or ACD) and the
bubbles coverage of the anode bottom can be reduced, which greatly contributes to the decrease of the voltage drop
in ACD and anode effects, so the energy consumption of the aluminum production can be lowered. On the other
hand electrolyte dragged by gas bubbles goes into the grooves, then to the side channel of the cell, passageway for
the bath circulation is widened, a relatively smooth bath circulation around the anode will be formed, which en-
hances the heat and mass transmission, therefore a good electrolysis operation can be obtained. Compared the
grooves which extend through the whole length of the anode bottom with those do not, the former are more propi-
tious to the stability of the bath flow, meanwhile as the grooves facilitate the gas venting, the so called “second reac-
tion”, i e. the aluminum reduced diffuse into the bath and react with the anode gas again, could be restrained to

some extent, which would be beneficial to the improvement of the current efficiency.
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Fig.1 Meshed bath model around
anode simulation of flow fields
1 —Bath in gas discharging grooves;

2 —Center channel of cell; 3 —Slot;

4 —Side channel; 5 —Center of slot;

6 —Center of center channel
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Fig. 2 Distributions of mean velocity vectors and
contours of turbulent kinetic energy in

slot center of anode with grooves
(a) —Mean velocity vectors ( maximum: 0.217 m/s);
(b) —Turbulent kinetic energy

(maximum: 4.09 x 10 ° m?/s%)

B3 JoHEACv B AR ] 4 vt i Ak
UL A T SR PR B B 2 A1 s
Fig.3 Distributions of mean velocity vectors and
contours of turbulent kinetic energy in

slot center of anode without grooves
(a) —Mean velocity vectors ( maximum: 0.246 m/s);
(b) —Turbulent kinetic energy

(maximum: 5.85x 10" * m?/s?)
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Fig. 4 Mean velocity vectors distribution in

bath around anode with grooves(m/s)
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Fig. 5 Mean velocity vectors distribution in

bath around anode without grooves(m/s)
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Fig. 6 Turbulent kinetic energy of

bath around anode with grooves(m?/s?)
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Fig.7 Turbulent kinetic energy of
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Fig. 8 Scenario 1: distributions of mean
velocity vectors and contours of

turbulent kinetic energy in grooves
(a) —Mean velocity vectors ( maximum: 0.217 m/s);
(b) —Turbulent kinetic energy

(maximum: 4.09% 10™* m?/s%)
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Fig. 9 Scenario 2: distribution of mean
velocity vectors and contours of

turbulent kinetic energy in grooves
(a) —Mean velocity vectors ( maximum: 0.214 m/s);
(b) —Turbulent kinetic energy

(maximum: 4.39% 107 * m?/s%)
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Table 1 Features of bath flow fields

around different anodes

Maximum M aximum
turbulent  turbulent Maximum Maximum
Anode kinetic dissipation  turbulent velocity/
energy/ rate/ intensity/ % (m* s~ 1)

(m2.572) (m2.573)

Scenario 1 4.36%x 103 1.36x 10~ 2 5.22 0.217

Scenario 2 4.67%x 1073 1.30x 10~ 2 5.40 0.214
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