o516 HH 2 W) PEAaEEFIR 2006 4 2
Vol. 16 No. 2 The Chinese Journal of Nonferrous Metals Feb. 2006

XEHS: 1004~ 0609(2006) 02 ~ 0260 ~ 08

A356 EEMREE S ITAREMNTEE

XS, REEM:, Z4k30, SKNI, FRHA, KRR
(R IMR2: P BE TREZEBE, MR BEEE 30 F 0S80 %, AN 450052)

B OE RMEASE S S . TaidE 5 A10Ti hial & 4, #l& 7 B RFEECS B amingk A356 &4
(EA356 &4) FUAILINER A356 & 4(MA356 &4x), WFF0 T AT FNEK 5 S0 A356 & 4 1) 0 A% fie 85 B2 A 4
PEOTIEREI M . A5 RN 4 PGSRBS IIE AT RAR KSR E14 . M14 5 S5
WAk BE ) TARER S B E10 A0 M 10 A 4 & 4 IR S Ik A R % 155 52 1 A i 1) 5% ) L BL A 0 BRAH O s v Y AR
MR INT, P AR e A (E LA 3 R Ay 2 N AR MR A I, < 110 0 1P 0 AR e B IMEL AR A RO, Rl 2
PERRUF I E10 AT M 10 A 425 o0 & A INEIS RS HCINER, LS 324 0. 1% ¥ E10 F0 M 10 A 43 (1) 1 3 7 3 45 R
WA ST RN TSN 0. 14% (1 E14 R M 14 &4 &S00 55 4 ar Ik o7 sUARBUK, e 40 [ 2k 5 =
T, PIRINAR 77 XA A B A AR AR R R Y .

KHEIR: A356 &4 MRk, YHVEN AR RE; %05

FEDHES: TG 146.2 XHERFRIRAD: A

Low cycle fatigue behavior and
plastic strain energy of A356 alloys
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Abstract: Two kinds of EA356 alloys(adding titanium by electrolysis method) and M A356 alloys( adding titanium
by melting AFTi master alloys), are produced by electrolytic low-titanium aluminum alloys, pure aluminum and AF
10% T1i master alloys respectively. The effects of titanium alloying method and titanium content on the plastic strain
energy density and low-cycle fatigue behavior of A356 alloys were investigated. The results show that four kinds of
A356 alloys show cycle hardening behavior. The cyclic hardening ability of alloys with high titanium content such as
E14 and M 14 alloys is higher than that of alloys with low titanium content such as E10 and M 10 alloys. The values
of plastic strain energy density are affected by the plastic strain amplitude and change with the cycle numbers. The
values of plastic strain energy density are higher at high strain amplitude and the change with cycle number is less.
But at low strain amplitude, its values are less and the change with cycle number is acute, especially for the alloys
with low titanium content and low yield strength such as E10 and M 10 alloys. Whether the EA356 alloys or MA356
alloys, the alloys with 0. 1% T1i have higher plastic strain energy density and low cycle fatigue life compared with
that of alloys with 0. 14% T1i. The fatigue life is insensitive to the titanium alloying method. If alloys have the same

titanium content, two kinds of alloys have similar low cycle fatigue life.
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Table 1 Chemical composition of A356 alloys(mass fraction, %)

Sample Ti alloying

No. method Si Fe Mg Ti Sr Al
E10 EA356 6. 47 0.10 0.32 0.11 0. 027 Bal.
E14 EA356 6. 87 0.10 0.41 0.14 0. 025 Bal.
M10 MA356 6.73 0.11 0.36 0.09 0.028 Bal.
M14 MA356 6. 89 0.11 0.41 0.13 0. 025 Bal.
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Table 2 Microstructure parameters and tensile properties of A356 alloys

Pri Second Average Aspec Round
Sample rme dendrite diameter S,I)e“t oun EESS ®.2/ 9,/
dentrite . . ratio of of Si & %
No. leneth/ tm arm spacing/ of Si Si particles articles MPa MPa
=6 Hm particles/ Hm = B o E o
E10 197.8 24.2 2.5920 1.373 0.877 248. 1 319.3 8.6
E14 190. 1 23.7 2.5390 1.342 0.911 261.0 327.8 7.1
M 10 204.2 24.8 2.699 0 1.372 0. 858 253.4 319.6 6.7
M 14 197.3 24.1 2.6505 1.327 0. 890 265.0 327.6 6.3
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Fig.1 Cyclichardening curves of A356 alloys
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Fig.2 Cyclichardening curves of A356 alloys
(a) —EA356 alloys; (b) —M A356 alloys
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(c¢) —Fatigue stripe, A&/2= 0.3%; (d) —Fatigue slipping band, A&/2= 0.3%
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Table 3 Parameters of plastic strain
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Sample No. w(Ti)/ % W/ (MJ. m™?) B
E10 0. 105 97.4 - 0.737
E14 0. 139 38.2 - 0.650
M10 0. 093 108.3 - 0.744
M14 0. 131 76.7 - 0.737
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