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Alloying effects of mechanical properties of B2-NiAl intermetallic
compound calculated by first principles method
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Abstract: Using the firstprinciples pseudopotential plane wave methods based on the density functional theory,
the geometric and electronic structures of ( NiX) Al supercells with different alloying elements X (X= Cr, Mn, Fe,
Co and Cu) or different Fe contents, e.g. 0, 3.125%, 4.167% and 6.25% (mole fraction) are calculated. Several
mechanical properties parameters such as elastic constant Cas, Cauchy pressure parameter (Ci2— Ca), elastic modu
lus E, the shear modulus G and their ratio G/ Bo are used to characterize and assess the effect of alloying element and
Fe content on the ductility and hardness of NiAl intermetallic compounds, respectively. The result shows that high
addition of alloying element X (6.25%) can not enhance the ductility of NiAl intermetallic compound although it
makes the hardness of NiAl improve as following order: NiAl< (Ni7Cu) Als< (Ni7Cr) Als< (NizFe) Als< (NizCo)-
Als< (Ni7Mn) Als. And the decreasing order of ductility of NiAl induced by alloying element X is opposite to their
hardness increasing order. With the increase of Fe content, the hardness of NiAl is elevated. And the upper limit
making the hardness of NiAl increase is about 4% . Meanwhile a gradual improvement of the ductility of NiAl is also
observed as Fe addition content decreases. From this variation tendency of the ductility of NiAl versus Fe content, a

deduction is made. The intrinsic embitterment of NiAl can be restrained if Fe content is enough low.
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Fig.1 Models used in calculation
(a) —Crystal structure of B> NiAl; (b) —Ni7AlsX (X= Cr, Mn, Fe, Co, Ni and Cu) supercell;
(¢) —(NinFe) ALz supercell; (d) —( NiisFe) AlLis supercell
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Table 1 Comparison of data of
elastic constants and bulk moduli of
(Ni7X) Als suppercells with experimental values

and other calculated values

Cu/ Cra/ Caal/ Bo/

Model (NoX)Als b GPa  GPa  GPa

Exp. 1] 199 137 116 158.7

Exp. 112 204.6 135.4 116.8 158.5
NiAl

Cal. by EAM!"3I 185.8 123.4 123.4 144.2

Cal. by LMTO! 146 156.0

NigAlg 164.06 152.17 97.48 156.13

(NizCr)Alg 218.01 120.59 117.82 153.06

(NizMn) Alg 249.62 120.32 128.32 163.42
Cal.

(NizFe) Als 223.97 126.37 128.32 158.90

(Ni7Co) Alg 242.36 121.61 127.11 161.86

(Ni7Cu) Als 159.30 150.84 108.69 153.66
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Fig. 2 Variations of elastic constants, elastic modulus, shear modulus(a),

and ratios of shear modulus to bulk modulus, negative Cauchy pressure parameters(b) with

number of valence electrons of alloying elements
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Table 2 Calculation data of elastic constants, bulk modulus, shear modulus and

elastic modulus of (NiFe) Al supercells with different Fe contents and ratio of G/ Bo

Cn/

Cs3/

Caal

Cos/

Ci2/

Cis/

Bo/

G/

E/

wBe) GPa GPa GPa GPa GPa GPa GPa GPa GPa Gi'By
0 164. 06 164. 06 97.48 97.48 152. 17 152. 17 156. 13 60. 87 161. 61 0.390
3.125 224. 82 194. 64 124.31 126. 47 126.73 126.73 156. 07 92.62 231.97 0.590
4.167 234.95 228.13 127. 00 126. 99 136. 52 122.06 162. 15 97.36 243.37 0. 600
6.250 223.97 223.97 128.32 128. 32 126. 37 126. 37 158. 90 96.51 240.78 0. 607
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