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Research and development progress of
dynamic recrystallization in pure magnesium and its alloys
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Abstract: Some aspects of present research on dynamic recrystallization in pure magnesium and its alloys were re-
viewed. The mechanical behaviors, including stress —strain characteristics, strain rate equation and flow stress
equation, during plastic deformation at ambient or elevated temperatures were discussed in detail. The evolution of
dislocation, twinning and substructure during plastic deformation under different conditions was also discussed. The
mechanisms and characteristics of dynamic recrystallization( DRX) such as twinning DRX, low temperature DRX,
continuous DRX, discontinuous DRX and rotation DRX, the correlation between plastic deformation and DRX as
well as the research prospect on DRX in pure magnesium and its alloys were summarized or proposed.
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Fig. 1 Stress —strain curves of
pure magnesium and magnesium alloys
(a) —Pure magnesium, €= 3x 107 % s ';
(b) —AZ61 magnesium alloy, €= 107° s~ ';
(¢) —ZK60 magnesium alloy, €= 2.8x 107> s !
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B .
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Fig.2 Schematic representation of

TDRX mechanism

(a) —Mutual intersection of primary twins 1 and 2;

(b) —Subdivision of coarse primary twin lamellas 1 by
fine secondary twins 2;

(¢) —Subdivision of primary twin lamellas by
transverse low-angle boundaries;
(d) —Scheme of formation of orientation misfit dislocations
(with Burger s vectors bs and bs) in twin boundaries

providing a change in misorientation of twin boundaries
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(a) —Dislocation pile ups in vicinity of initial grain boundary;
(b) —Nucleation and gradual increase of misorientation of

subboundary due to trapping mobile dislocations
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DRX FFAE'™!, XA gL DDRX MR A 4 sh
T4 G % (conventional DRX) {54 .
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Fig. 4 Schematic representation of
DDRX mechanism

(a) —Local migration of boundary toward
slip localization in magnesium;

(b) —Partial grain boundary shearing, leading to
development of inhomogeneous strain gradients and
cutting of protrusion by multiple slip band;

(¢) —Formation of medium to high angle boundaries at

place of bulging out
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8, Wi RAREE, B BOKIIAR AT B P BT D)
(B 5(c)), WASTEAFHIBOR AR TR, N
AN T IR, .

(b)

5 Je¥EhA TS RRX) R K
Fig. 5 Schematic representation of
RRX mechanism
(a) —Subgrains form in mantle regions;
(b) —M antle region becomes thicker;
(¢) —New recrystallized grains tend to

cluster and large banded areas( ductile shear zones)
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Fig. 6 Schematic representation of
LTDRX mechanism

(a) —Dislocation pile-ups are formed in

parallel basal planes;
(b) —Dislocations rearrange from pile ups to
dislocation boundaries with high angle misorientation;
(¢), (d) —Transition from rectangular grain shape to

essentially equiaxed shape at very large st9rain

HAR Galiyev %5 2 T LTDRX # # A5 AY,
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Fig.7 Deformation and DRX mechanism map of
ZK60 magnesium alloy
1 —Twinning; 2 —a dislocation basal slip;
3 —(a+ c¢) dislocation slip;

4 —a dislocation cross slip on Friedel Escaig mechanism;
5 —Dislocation climb; 6 —Rotations at twin boundaries;
7 —Grain boundary serration; 8 —Subgrain formation;

9 —Grain boundary migration; 10 —Subgrain growth;

12 —CDRX; 13 —Bulging DRX;

14 —Subgrain DRX

11 —LTDRX;
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