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Abstract: According to experimental results in which the dehydrogenating properties of MgH, systems were improved
by addition of NiF, as catalyst, the energy to remove H atoms, the geometry and electronic structure of MgH, systems
were calculated by using Dmol 4.1 program based on the density functional theory, and the mechanism of improved
properties on Ni doped MgH, systems were also analyzed. The results show that although both Ni substitution and Mg
vacancies are effective in desorbing hydrogen at lower temperatures, the substitution of Ni at the Mg site is energetically
more favorable than the formation of Mg vacancies. The Ni atoms of NiF, can replace some Mg atoms of MgH, systems,
the reaction of NiF,+3MgH,=MgF,+Mg,NiH, during mill process is accelerated, thus, MgH, with the higher stability can
be changed into Mg,NiH,. Because of a ternary hydride Mg,NiH, with lower stability forming, the dehydrogenating
properties on Ni doped MgH, systems are improved.
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Fig.3 Bonding distance changes between H and Mg(Ni) atoms
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Fig.4 DOS of MgH, systems: (a) Before Ni atom substituting Mg atom; (b) After Ni atom substituting Mg atom
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