文章编号: 1004-0609(2009)01-0148-05

Pt-Ru 合金系的特征原子序列和催化性能

彭红建^{1,2},谢佑卿²,李小波²,聂跃庄²

(1. 中南大学 化学化工学院,长沙 410083;2. 中南大学 材料科学与工程学院,长沙 410083)

摘 要:依据特征晶体理论(CC)确定 Pt-Ru 合金系中的特征原子序列和特征晶体序列的电子结构、势能、原子体积、晶格常数和结合能等,研究合金催化剂的稳定性、催化性能及成分配比;计算 Pt-Ru 有序合金中 Pt 和 Ru 配比分别为 3:1、1:1 和 1:3 的合金的势能和晶格常数,并分析组元 Pt 的组态变化;计算 Pt-Ru 无序合金的平均性质和组元 Pt 的电子结构。研究结果表明:随着 Ru 含量的增加,势能降低,合金稳定性增强,晶格常数随之减小,组元 Pt 的 d 空穴增加,提高了催化活性;合金中 Pt 与 Ru 的最佳原子个数之比约为 1:1。 关键词: Pt-Ru 合金;电子结构;催化性能 中图分类号: TG 146.2 文献标识码: A

Catalytic performance and characteristic atom sequences of Pt-Ru alloy system

PENG Hong-jian^{1, 2}, XIE You-qing², LI Xiao-bo², NIE Yue-zhuang²

(1. School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China;

2. School of Materials Science and Engineering, Central South University, Changsha 410083, China)

Abstract: Using the characteristic crystal theory(CC), the electronic structures, potential energies, atomic volumes, lattice constants and cohesive energies of characteristic atom sequences and characteristic crystal sequences of Pt-Ru alloy were determined. The stability, catalytic performance and ratio of composition of alloy catalyst were discussed. The potential energies and lattice constants of Pt-Ru ordered alloys in which the atomic ratios of Pt to Ru are 3:1, 1:1 and 1:3, respectively, were calculated. The configuration of component Pt was analyzed. The average properties of Pt-Ru disordered alloys and electronic structures of Pt-component were calculated. The results show that when the content of Ru increases, the potential energy decreases, the stability increases, the lattice constant decreases and the d-orbital vacancy is enlarged, which is advantageous to reaction. The most proper atomic ratio of composition of alloy as catalyst is 1:1.

Key words: Pt-Ru alloy; electronic structure; catalytic performance

近年来,由于世界性能源危机和环境污染日趋严重,具有能量密度高、无腐蚀、工作温度低、无污染等优点的质子交换膜燃料电池(PEMFC)成为研究的热点,被称为是第4代发电技术,被公认为是21世纪汽车内燃机最有希望的取代者^[1-3]。电催化剂是其最重要

的组成部分。目前,电催化剂仍以铂系为主。但由于 Pt 系催化剂价格昂贵、利用率低、资源匮乏,造成 PEMFC 成本很高,制约其商品化。Pt-Ru 合金催化剂 通过 Pt 和 Ru 的协同作用大大减少了 Pt 的用量,提高 了电催化剂抗 CO 的性能^[4-6]。寻找廉价催化剂,提高

基金项目:国家自然科学基金资助项目(50471058);湖南省自然科学基金资助项目(08JJ3099);湖南省教育厅资助项目(K21);粉末冶金国家重点实验室资助项目

收稿日期: 2008-04-03; 修订日期: 2008-11-10

通讯作者: 彭红建, 副教授, 博士后; 电话: 0731-8879287; E-mail: phj108@163.com

催化剂性能是我们研究的主要目标。谢佑卿教授建立 了系统合金科学(SSA)框架^[7],它由纯金属系统科学, 合金物理与化学和合金统计热力学三部分组成。其核 心内容是纯金属单原子理论(OA)^[8-10]和合金特征晶体 理论(CC)^[11-14]。为此,本文作者依据 CC 理论确定 Pt-Ru 合金系的特征原子和特征晶体序列的基本信息, 对 Pt-Ru 合金催化剂的催化活性、稳定性及成分配比 方案进行系统研究,揭示电催化剂的电子结构与催化 性能的关系,为实现质子交换膜燃料电池电催化剂的 优化设计提供理论指导。

1 Pt-Ru 合金系的特征原子和特征晶 体序列

在 SSA 框架中,依据特征晶体相加定律,导出 9 种不同的原子体积和能量函数。这些函数都描述合金 系的平均原子体积,能量随成分的变化关系。根据若 干无序合金的晶格常数和生成热的实验值,通过各特 征原子的电子结构、势能和体积的相关性分析,以及 与其它实验信息的对比,获得 Pt-Ru 合金系的特征原 子和特征晶体序列的基本信息如表 1 和 2 所列。Pt-和 Ru-特征原子的原子势能和原子体积随配位数 *i* 的变 化如图 1 所示;其中下标 *i* 表示最近邻 Ru 的原子个数; *s*_c和 *d*_c分别表示 s、d 轨道上的共价电子; *d*_n表示 d 轨道上的非键电子; *s*_f表示 s 轨道上的近自由电子; *ε* 表示原子势能; *V*表示原子体积; *a*表示晶格常数; *E*_c表示结合能。

2 Pt-Ru 合金催化剂的成分配比以及 催化活性与稳定性的关系

依据特征原子序列 $A_0^{\text{Pt}} \cdots A_i^{\text{Pt}} \cdots A_l^{\text{Pt}}$ 和 $A_0^{\text{Ru}} \cdots A_i^{\text{Ru}} \cdots A_l^{\text{Ru}}$ 与相应特征晶体序列 $C_0^{\text{Pt}} \cdots C_l^{\text{Pt}} \cdots C_l^{\text{Pt}}$ 和 $C_0^{\text{Ru}} \cdots C_l^{\text{Ru}} \cdots C_l^{\text{Ru}}$ 的基本信息和特征晶体相加定律,就可求得 $Pt_{1-x}Ru_x$ 合金及其组元的电子结构、原子势能、原子体积、晶格常数、结合能等物理性质随浓度的变化,揭示 $Pt_{1-x}Ru_x$ 合金的电子结构、晶体结构参数和性质随浓度变化的内在本质。

2.1 Pt-Ru 有序合金催化剂的催化性能和稳定性

若 Pt 和 Ru 原子按不同配比能形成不同类型的金 属间化合物,那么,常见的金属间化合物就有如下 3 种不同的情况。

 当 Pt 和 Ru 原子个数之比为 3:1 时,合金实质 上就是 A₃B 型催化剂,它由 A₄^{Pt} 和 A₀^{Ru} 2 种特征原子 组成。可通过表 1 和 2 得到这 2 种特征原子的势能和

表1 Pt-Ru 合金系中 Pt-特征原子和特征晶体的结构参数和性质

 Table 1
 Structural parameters and properties of Pt characteristic atoms and corresponding characteristic crystals in Pt-Ru alloy system

C_i^{Pt}	$s_{\rm f}$	Sc	$d_{ m c}$	$d_{\rm n}$	$\varepsilon/(eV \cdot atom^{-1})$	$V/(10^{-3} \text{nm}^3 \cdot \text{atom}^{-1})$	a/nm	$E_{\rm c}/({\rm kJ}\cdot{\rm mol}^{-1})$
$C_0^{\rm Pt}$	0.040 0	1.460 0	2.540 0	5.960 0	-5.852 6	15.095	0.392 31	564
C_1^{Pt}	0.038 2	1.510 2	2.462 1	5.983 5	-5.878 7	15.069	0.392 09	566.52
$C_2^{\rm Pt}$	0.036 5	1.557 4	2.390 5	6.015 6	-5.885 0	15.052	0.391 94	567.13
$C_3^{\rm Pt}$	0.035 0	1.600 9	2.325 1	6.039 0	-5.889 2	15.036	0.391 80	567.53
$C_4^{ m Pt}$	0.033 5	1.640 7	2.275 2	6.048 6	-5.892 2	15.021	0.391 67	567.82
$C_5^{\rm Pt}$	0.032 2	1.676 4	2.224 6	6.066 8	-5.894 6	15.008	0.391 56	568.05
$C_6^{\rm Pt}$	0.031 0	1.707 6	2.180 7	6.080 7	-5.896 3	14.997	0.391 46	568.22
$C_7^{\rm Pt}$	0.030 0	1.734 5	2.143 1	6.092 4	-5.897 8	14.988	0.391 38	568.36
$C_8^{\rm Pt}$	0.029 2	1.756 7	2.112 4	6.101 7	-5.898 9	14.981	0.391 32	568.47
$C_9^{\rm Pt}$	0.028 5	1.774 1	2.088 5	6.108 9	-5.899 8	14.974	0.391 26	568.55
C_{10}^{Pt}	0.028 0	1.786 5	2.071 4	6.114 1	-5.900 4	14.971	0.391 23	568.61
C_{11}^{Pt}	0.027 7	1.794 0	2.061 1	6.117 2	-5.900 7	14.968	0.391 21	568.64
C_{12}^{Pt}	0.027 6	1.796 5	2.057 4	6.118 5	-5.900 8	14.967	0.391 20	568.65

表 2	Pt-Ru 合	金系中 R	u-特征原	子和特	F征晶(本的	结构参	診数和性	主质
	I C I CG L	M. / J Y I I I I				т н <i>у</i>	~H J ~	Z ZACI L	1.12

 Table 2
 Structural parameters and properties of Ru characteristic atoms and corresponding characteristic crystals in Pt-Ru alloy system

C_i^{Ru}	s_{f}	s _c	$d_{ m c}$	d_{n}	$\epsilon/(eV \cdot atom^{-1})$	$V/(10^{-3} \text{nm}^3 \cdot \text{atom}^{-1})$	<i>a</i> /nm	$E_{\rm c}/({\rm kJ}{\cdot}{\rm mol}^{-1})$
C_0^{Ru}	0.298 5	1.374 0	2.245 3	4.082 2	-6.424 3	14.174	0.384 16	619.08
C_1^{Ru}	0.301 9	1.378 2	2.249 5	4.070 4	-6.424 7	14.169	0.384 12	619.14
C_2^{Ru}	0.305 2	1.379 9	2.253 9	4.061 0	-6.428 5	14.157	0.384 01	619.47
C_3^{Ru}	0.307 7	1.381 7	2.263 9	4.046 7	-6.436 8	14.138	0.383 84	620.31
$C_4^{ m Ru}$	0.313 8	1.384 2	2.273 0	4.029 0	-6.446 1	14.111	0.383 59	621.18
C_5^{Ru}	0.321 7	1.387 5	2.287 1	4.003 7	-6.458 6	14.074	0.383 26	622.38
C_6^{Ru}	0.334 0	1.390 6	2.299 9	3.975 5	-6.472 1	14.031	0.382 87	623.68
$C_7^{\rm Ru}$	0.347 1	1.393 4	2.317 5	3.942 0	-6.489 7	13.980	0.382 40	625.36
C_8^{Ru}	0.360 0	1.397 7	2.340 4	3.901 9	-6.511 5	13.920	0.381 86	627.44
C_9^{Ru}	0.377 6	1.402 2	2.361 6	3.858 6	-6.532 3	13.854	0.381 25	629.55
C_{10}^{Ru}	0.396 4	1.407 8	2.387 5	3.808 3	-6.559 2	13.779	0.380 56	632.03
C_{11}^{Ru}	0.420 3	1.413 5	2.411 3	3.754 8	-6.585 2	13.696	0.379 80	634.56
C_{12}^{Ru}	0.440 0	1.420 0	2.440 0	3.700 0	-6.615 3	13.605	0.379 01	637.50

图 1 Pt-Ru 合金系中 Pt-和 Ru-特征原子的原子势能 ε_i^{Pt} 和 ε_i^{Ru} 与原子体积 V_i^{Pt} 和 V_i^{Ru} 随配位数 *i* 的变化

Fig.1 Relationship of atomic potential energies, $\varepsilon_i^{\text{Pt}}$, $\varepsilon_i^{\text{Ru}}$ (a) and atomic volumes, V_i^{Pt} , V_i^{Ru} (b) of Pt and Ru characteristic atoms with coordination number *i* in Pt-Ru alloy system

晶格常数:

 $\varepsilon = 0.75\varepsilon_4^{\text{Pt}} + 0.25\varepsilon_0^{\text{Ru}} = 0.75 \times (-5.8922) + 0.25 \times (-6.4243) = -6.0252 \text{ (eV/atom)}$

 $a = 0.75a_4^{\text{Pt}} + 0.25a_0^{\text{Ru}} =$ $0.75 \times 0.391 \ 67 + 0.25 \times 0.384 \ 16 = 0.389 \ 79 \text{ (nm)}$

2) Pt 和 Ru 原子个数之比为 1:1 时,合金实质上就是 AB 型催化剂,它由 A₈^{Pt} 和 A₄^{Ru} 2 种特征原子组成,它的势能和晶格常数为

 $\varepsilon = 0.5\varepsilon_8^{\text{Pt}} + 0.5\varepsilon_4^{\text{Ru}} = 0.5 \times (-5.8989) + 0.5 \times (-6.4461) = -6.1725 \text{ (eV/atom)}$

 $a = 0.5a_8^{\text{Pt}} + 0.5a_4^{\text{Ru}} = 0.38746 \text{ (nm)}$

3) 当 Pt 和 Ru 原子个数之比为 1:3 时,合金实质 上就是 AB₃型催化剂,它由 A₁₂^{Pt} 和 A₈^{Ru} 2 种特征原子 组成,它的势能和晶格常数为

 $\varepsilon = 0.25\varepsilon_{12}^{Pt} + 0.75\varepsilon_8^{Ru} = 0.25 \times (-5.9008) + 0.75 \times (-6.5115) = -6.3588 (eV/atom)$

 $a = 0.25a_{12}^{Pt} + 0.75a_8^{Ru} = 0.384\ 20\ (nm)$

从以上3种不同配比的电催化剂的势能来看,AB3 型催化剂的势能最低,稳定性最好;A₃B型催化剂的 势能最高,稳定性最差。但相对于纯Pt来说,其稳定 性均增加了。从电催化剂的成本来看,AB3型催化剂 的成本最低,A₃B型催化剂的成本最高。随着 Ru 含 量的增加,晶格常数也随之减小,金属Pt的组态随周 围最近邻 Ru 原子的数目发生变化,即 $\psi_4^{\text{Pt}} \rightarrow \psi_8^{\text{Pt}} \rightarrow \psi_{12}^{\text{Pt}}$, Pt 组元占据在 d 轨道上的电子减少了,增加了 Pt 的 d 空穴,使催化活性增强,但当 Ru 含量超过 50% 后, Pt 的 d 空穴增加得比较慢,对催化活性影响不大。

2.2 Pt-Ru 无序合金的催化性能和稳定性

以组元 Pt 和 Ru 的浓度 x(Pt) = 1 - x 和 x(Ru) = x为占据格点的几率,在基本格子中排放 Pt 和 Ru 原子, 便可形成 $Pt_{1-x}Ru_x$ 的无序合金。根据数学原理可以推 导出合金中特征原子的浓度与组元成分之间的关系为

$$\begin{cases} x_i^{\text{Pt}} = C_I^i x_{\text{Pt}}^{(I-i+1)} x_{\text{Ru}}^i \\ x_i^{\text{Ru}} = C_I^i x_{\text{Pt}}^{(I-i)} x_{\text{Ru}}^{(i+1)} \end{cases}$$

式中 $C_I^i = I / (I - i)!i!$, *I* 为配位数,等于 12;根据 上式便可绘出 Pt 和 Ru 特征原子浓度与组元浓度的关 系曲线,如图 2 所示。

若已知无序 Pt-Ru 合金的特征原子的浓度 x_i^{Pt} 和 x_i^{Ru}(即特征晶体和基本原子团浓度)随合金浓度 x(Ru) 的变化规律,可计算出无序合金和组元的电子结构和 性质,表 3 所列是无序合金的性质以及组元 Pt 的电子 结构。

从表 3 可以看出,随着 Ru 含量增加,其势能逐 渐降低,稳定性升高。从金属 Pt 组元的电子结构来看, 占据在 d 轨道上的电子减少了,增加了 Pt 的 d 空穴, 合金的晶格常数也减小了,使催化活性增强;而且随 着 Ru 含量增加,其成本也随之降低,但当 Ru 含量超 过 50%后,Pt 的 d 空穴增加得比较慢,对催化活性影 响不大。

据文献[15-16]报道, Pt-Ru 合金催化剂抗 CO 的 原因是由于将 Ru 加入 Pt 晶格后, 使 CO 在合金表面

```
表 3 无序 Pt-Ru 合金的性质及其组元 Pt 的电子结构
```

 Table 3
 Properties of disordered Pt-Ru alloy and electronic structure of Pt component

的吸附状态有所改变,降低了吸附能,起到了活化吸 附态 CO 的作用,降低了对 CO 的氧化电势。当 Pt 与 Ru 的原子比为 1:1 时,催化剂对 CO 的氧化电势最低。

图 2 Pt-Ru 无序合金中特征原子的 x_i^{Pt} 和 x_i^{Ru} 随成分 x_{Ru} 的 变化

Fig.2 Concentrations $(x_i^{Pt} \text{ and } x_i^{Ru})$ as function of composition (x(Ru)) in disordered Pt-Ru alloy: (a) x_i^{Pt} vs x(Ru); (b) x_i^{Ru} vs x(Ru)

		Alloy		Pt component				
x _{Ru}	$\varepsilon/(eV \cdot atom^{-1})$	$V/(10^{-3} \text{nm}^3 \cdot \text{atom}^{-1})$	<i>a</i> /nm	$E_{\rm c}/({\rm kJ}\cdot{\rm mol}^{-1})$	d_{n}	$d_{ m c}$	s _c	s_{f}
0.10	-5.880 4	15.002 0	0.391 48	569.2	5.969 3	2.480 1	1.513 0	0.037 6
0.25	-6.000 4	14.734 0	0.389 10	583.27	5.993 6	2.380 0	1.591 7	0.035 7
0.30	-6.030 6	14.681 0	0.388 63	586.14	6.022 1	2.327 5	1.615 7	0.034 7
0.40	-6.089 2	14.586 0	0.387 80	591.47	6.045 3	2.251 4	1.670 3	0.033 0
0.50	-6.145 9	14.506 0	0.387 09	596.38	6.063 4	2.196 1	1.709 1	0.031 4
0.60	-6.283 5	14.338 0	0.385 61	607.75	6.079 5	2.159 0	1.731 2	0.030 3
0.75	-6.311 2	14.306 0	0.385 33	609.97	6.086 4	2.126 6	1.757 8	0.029 2
0.80	-6.201 3	14.435 0	0.386 46	601.03	6.095 9	2.099 4	1.776 2	0.028 5
0.90	-6.367 7	14.241 0	0.384 75	614.52	6.112 4	2.068 1	1.791 8	0.027 7

因此,从稳定性、d 空穴增加幅度、成本及抗 CO 中 毒的能力等方面综合考虑,确定在 Pt-Ru 合金催化剂 中 Pt 与 Ru 的原子个数比约为 1:1。

3 结论

1) 根据特征晶体理论确定 Pt-Ru 合金系中的特征 原子序列和特征晶体序列的电子结构、原子体积、势 能、晶格常数和结合能等基本信息,为建立 Pt-Ru 合 金系的信息库和进行 Pt-Ru 合金系电催化剂的设计提 供了完整的数据。

2) 应用特征原子相加定律计算了 Pt-Ru 有序合金 中 Pt 和 Ru 原子比分别为 3:1、1:1 和 1:3 的合金的势 能和晶格常数,并分析组元 Pt 的组态的变化。在 Pt-Ru 有序合金中,随着 Ru 的增加,势能降低,稳定性增 强,晶格常数减小,组元 Pt 的 d 空穴增加了,提高了 催化活性。

3) 应用特征晶体相加定律计算了无序合金的性质和组元 Pt 的电子结构。在无序合金中随着 Ru 含量的增加,势能降低,晶格常数也随之减小,而组元 Pt 的 d 空穴增加了,提高了催化活性。

4) 确定了 Pt-Ru 合金成分最佳配比的方案, Pt 和 Ru 原子个数之比约为 1:1,进一步拓宽了系统合金科 学框架的应用,实现了电子结构与催化性能的关联, 为电催化剂设计提供理论指导。

REFERENCES

- RADMILOVIC V, GASTEIGER H A, ROSS P N. Structure and chemical composition of a supported Pt-Ru electrocatalyst for methanol oxidation[J]. Journal of Catalysis, 1995, 154: 98–106.
- [2] LIZCANO-VALBUENA W H, PAGANIN V A, LEITE C A P. Catalysts for DMFC: relation between morphology and electrochemical performance[J]. Electrochimica Acta, 2003, 48: 3869–3878.
- [3] BRANKOVIC S R, WANG J X, ZHU Y, SABATINI R, MCBREEN J. Electrosorption and catalytic properties of bare and Pt modified single crystal and nanostructured Ru surface[J]. Journal of Electroanalytical Chemistry, 2002, 524: 231–241.
- [4] HOU Zhong-jun, YU Hong-mei, YI Bao-lian, HAN Ming. The development of carbon monoxide tolerant catalyst for proton exchange membrane fuel cell[J]. Electrochemistry, 2000, 6(4):

379-384.

- [5] LI D L, NISHIDA K, ZHAN Y Y, SHISHIDO T, OUMI Y, SANO T, TAKEHIRA K. Superior catalytic behavior of trace Pt-doped Ni/Mg(Al)O in methane reforming under daily start-up and shut-down operation[J]. Applied Catalysis A: General, 2008, 350(2): 225–236.
- [6] CROY J R, MOSTAFA S, HICKMAN L, HEINRICH H, CUENYA B R. Bimetallic Pt-metal catalysts for the decomposition of methanol: Effect of secondary metal on the oxidation state, activity, and selectivity of Pt[J]. Applied Catalysis A: General, 2008, 350(2): 207–216.
- [7] 谢佑卿. 合金系统科学框架[J]. 材料导报, 2001, 15(4): 12-15.
 XIE You-qing. The framework of metallic materials systematic science[J]. Mater Rev, 2001, 15(4): 12–15.
- [8] 谢佑卿, 马柳莺. 晶体价电子结构的理论参量[J]. 中南矿冶 学院学报, 1985, 16(1): 1-10.
 XIE You-qing, MA Liu-ying. The theoretical lattice parameter of valence electron structure of crystal[J]. J Cent South Inst of Mining and Metall, 1985, 16(1): 1-10.
- [9] XIE You-qing. A new potential function with many-atom interactions in solid[J]. Science in China: Series A, 1993, 36(1): 90–99.
- [10] XIE You-qing. One atom self-consistency method for determining electronic structure of crystal[J]. Chinese Science Bulletin, 1992, 37(16): 1529–1532.
- [11] XIE Y Q, PENG K, LIU X B. Influences of x_T/x_{Al} on atomic states, lattice constants and potential energy planes of ordered FCC TiAl type alloys[J]. Physica B, 2004, 344: 5–20.
- [12] XIE Y Q, LIU X B, PENG K. Atomic states, potential energies, volumes, brittleness and phase stability of ordered FCC TiAl₃ type alloys[J]. Physica B, 2004, 353: 15–33.
- $\label{eq:states} \begin{array}{ll} \mbox{[13]} & \mbox{XIE Y Q, PENG H J, LIU X B. Atomic states, potential energies,} \\ & \mbox{volumes, brittleness and phase stability of ordered FCC Ti_3Al} \\ & \mbox{type alloys[J]. Physica B, 2005, 362: 1–17.} \end{array}$
- [14] XIE Y Q, TAO H J, PENG H J. Atomic states, potential energies, volumes, brittleness and phase stability of ordered FCC TiAl₂ type alloys[J]. Physica B, 2005, 366: 17–37.
- [15] IANNIELLO R, SCHMIDT V M, STIMMING U, STUMPER J, WALLAU A. CO adsorption and oxidation on Pt and Pt-Ru alloys: Dependence on substrate composition[J]. Electrochimica Acta, 1994, 39: 1863–1892.
- [16] LEE S J, MUKERJEE S, TICIANELLI E A, MCBREEN J. Electrocatalysis of CO tolerance in hydrogen oxidation reaction in PEM fuel cell[J]. Electrochimica Acta, 1999, 44: 3283–3290.

(编辑 杨 华)