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Table 1 Chemical composition of as-cast ingot of Ti-6Al-
4V alloy (mass fraction, %)

Al \Y Fe Ti
6.59 4.77 0.035 Bal.

El1 A RIS TCA B & a A AR 4141
Fig. 1
(b) Microstructure

Initial microstructures of TC4 titanium alloy prepared by electron beam cold hearth melting: (a) Macrostructure;
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Fig.2 Schematic diagram of rolling process
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Characterization
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Optical microstructures((a), (b), (c)) and inverse pole figure (IPF) maps((d), (e), (f)) under different heating

deforming number: (a), (d) First heating deforming; (b), (e) Second heating deforming; (c), (f) Third heating deforming
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Table 2  Five types of misorientation between o/a variants

Type No. Misorientation angle/(°) Axis
1 10.53° [0001]
2 60° [1120]
3 60.83° [107173]
4 63.26° [10553]
5 90° [717100]
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Fig. 4 Relative fraction of low angles grain boundaries
(LAGBSs) and high angles grain boundaries (HAGBs) under
different heating deforming number: (a) First heating
deforming; (b) Second heating deforming; (c) Third heating

deforming
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Fig. 6 TEM images of different heating deforming number: (a), (b) Differnet areas, first heating deforming;

(¢), (d) Differnet areas, second heating deforming; (e), (f) Differnet areas, third heating deforming
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Fig. 11 Tensile fracture morphologies at room temperature under different heating deforming number: (a)—(d) Transverse

direction; (e)-(h) Rolling directions; (a), (e) As-cast; (b), (f) First heating deforming; (c), (g) Second heating deforming;
(d), (h) Third heating deforming
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Influence of hot rolling process on microstructure, microtexture and
mechanical properties of Ti-6Al-4V alloy fabricated by
electron beam cold hearth melting

WANG Wei' %, GONG Peng-hui', SHI Ya-ming?, ZHANG Hao-ze**, ZHANG Xiao-feng?, WANG Kuai-she'

(1. School of Metallurgical Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China;
2. Yunnan Titanium Industry Co., Ltd., Chuxiong 651209, China;
3. School of Materials Science and Engineering,

Kunming University of Science and Technology, Kunming 650093, China)

Abstract: The influence of the hot rolling process on the microstructure, microtexture and mechanical properties
of Ti-6Al-4V alloy fabricated by electron beam cold hearth melting were investigated. The results show that the
prior coarse grains are broken with the increase of the heating deforming number. The grains gradually change to
the equiax to form a mass of fine equiaxed a phases. Besides, the fractions of the Low Angles Grain Boundaries
(LAGBsS) increase with the heating deforming number. After the third heating deforming, the fractions of LAGBs
increases by 35.1%, compared with the fractions of LAGBs after the first heating deforming. Meanwhile, the
dislocation density increases. The variant selection occurring during the f — a transformation during the hot
rolling process. The strong “T” textures are found after the first heating deforming, and the prismatic {a) slip
system triggers firstly. The texture component changes with the increase of the heating deforming number. The
tensile strength and elongation of the samples significantly improve after the third heating deforming. The tensile
strength of the sample at room temperature and 400 C increase by 271 MPa and 189 MPa in the rolling direction
and 300 MPa and 402 MPa in transverse direction, respectively, compared with the as-cast sample. In addition, the
elongation of the sample at room temperature and 400 C increase by 7.4% and 15.3% in rolling direction and
7.6% and 4% in transverse direction, respectively. The fracture mechanisms change from quasi-cleavage fracture
to ductile fracture in rolling direction, and the fracture mechanisms change from brittle fracture to ductile fracture
in transverse direction.

Key words: TC4 titanium alloy; electron beam cold hearth melting; microstructure; microtexture; mechanical

property
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