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Reactive ability and bond strength analysis on A I(OH); crystals with
three different crystallines

WU Zheng-ping, CHEN Qi-yuan, YIN Zhou-lan, LI Jie

(College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China)

Abstract: Crystal structure models of AI(OH); crystals with three kinds of crystallines, which are gibbsite, bayerite and
nordstradite, were built respectively according to the corresponding experimental crystal lattice. Geometry optimizations
were implemented by CASTEP program module using general gradient approximation (GGA) and local density
approximation (LDA) methods respectively based on density functional theory (DFT). The total energy, electronic
structure, atomic and bond populations were also calculated. The calculation results of total energy indicate that gibbsite
is more steady than the other two according to energy, and the effect of basis set of GGA-PWO1 is the highest. Energy
bond structure and density of states calculated at GGA-PW91 and LDA-CA-PZ levels show that the difference of energy
gap AE (ELumo—Enomo) at the first group of BZ is not obvious, and that the highest value of AE of gibbisite is more lower
than that of the other two Al(OH); crystals. Gibbisite may be more active than the other two crystals. The bond
populations value of H—O and Al—O bonds of gibbisite is the smallest in three different AI(OH); crystals. This is to say
that the combination force of H—O and AI—O bonds of gibbisite is the smallest and gibbisite may be more easier to be
calcined into alumina theoretically.
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Fig.1 Calculation models of three kinds of AI(OH); crystals: (a) Gibbisite; (b) Bayerite; (c) Nordstradite
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