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电流密度对无氰电镀 Au 凸点生长行为的影响 
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摘  要：研究一种以氯金酸钠为主盐的无氰镀金液在 80 ℃、镀液pH为 8.0 时阴极电流密度(J)对Au凸点生长行

为的影响。结果表明：J在 0.5~2.5 A/dm2范围内逐渐增大时，Au凸点生长速度单调增大；当J=0.5~1.0 A/dm2时，

所得Au凸点晶粒细小、表面平整、内部致密；当J=1.5~2.5 A/dm2时，随着J的增大，凸点表面粗糙度逐渐增大，

内部致密度逐渐降低；从凸点横截面形貌来看，在J=2.0 A/dm2时出现树枝晶，在J=2.5 A/dm2时树枝晶及晶间间

隙已非常明显。确定了该镀液制作Au凸点的最佳电流密度为J=1.0 A/dm2。此时，平均凸点厚度与施镀时间之间

存在良好的线性关系。在蒸镀Au种子层并刻蚀有图形的Si基板上得到外形规整且与基板结合良好的Au凸点。 
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Abstract: The effect of current density (J) on the growth behavior of Au bumps in a stable non-cyanide gold 

electrolyte containing NaAuCl4·2H2O was investigated under 80 ,℃  pH 8.0. While J was in the range of 0.5~2.5 

A/dm2, the higher the J was, the faster the Au bumps growth rate was. The results show that when J=0.5~1.0 A/dm2, 

the Au bumps have fine grains, high density and smooth surface. While J =1.5~2.5 A/dm2, the surface of the Au bumps 

becomes coarsing with increasing J value, whereas the density of the bumps keeps decreasing. Dendrites are clearly 

observed when J=2.0 A/dm2, and they become pronounced when J=2.5 A/dm2. Through the experiments, J=1.0 A/dm2 is 

chosen to electroplate Au bumps, under which a linear relationship exists between the average thickness of Au bumps 

and the electroplating time. Au bumps with regular shape and high adhesive strength with the Si substrate are obtained. 
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倒装芯片封装技术能有效改善传统正装氮化镓

LED固有的出光率低和散热能力差的缺点[1−7]，用倒装

芯片技术实现大功率型LED，被学术界和产业界认为

是LED进入照明市场的必经之路。而Au80Sn20(质量

分数，%)钎料因可实现免助焊剂焊接、焊点可靠性高

以及高导热性等优良的综合性能而成为制备LED倒装

芯片凸点的佳选[8−9]，该凸点一般采用分步电镀Au/Sn
薄膜的方法来实现[10]。但目前电镀金多采用含氰镀

液，不但对环境和人体有害，而且镀液中游离的氰离

子还对芯片工业上广泛应用的光阻有一定的副作用
[11−12]，所以，对无氰镀金液的研究具有重要的工程应

用价值。电镀时施加的电流密度对镀层质量有很大 
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影响，只有使电流密度在一定的范围内取值，才能得

到满足要求的高质量镀层[13−15]。 
因此，本文作者将以一种自制的无氰镀金液为基

础，采用周期换向方波脉冲方式供电，研究电镀 Au
凸点过程中电流密度对 Au 凸点生长行为的影响。并

通过综合考虑电流密度对 Au 凸点生长速度与凸点质

量两方面的影响，确定制备 Au 凸点的最佳电流密度。 
 

1  实验 
 
1.1  实验装置设计 

电镀装置示意图如图 1 所示。采用 88−1 型大功

率恒温磁力搅拌器进行水浴加热、保温和搅拌，水浴

槽置于搅拌器的加热盘上，电镀槽置于水浴槽中央的

支架上。 
 

 
图 1  电镀装置示意图 

Fig.1  Scheme of electroplating equipment 
 
1.2  无氰镀金液化学成分及浓度 

所用无氰镀金液的化学组成及浓度见表 1，所有

镀液由去离子水配制。配制好的镀液已在室温下放置

数月，未见不稳定现象发生。 
 
表 1  无氰镀金液的化学成分 

Table 1 Chemical compositions of non-cyanide Au 

electroplating solution 

Ingredient Consistency/(g·L−1) 
NaAuCl4·2H2O 10−20 

Na2SO3 50−100 
Complexing agent B 10−50 

Buffering agent 5−30 
Grain refiner 1−5 

Conducting salt 50−100 

 

1.3  电镀工艺条件的设计 
1.3.1  电源与电极材料的选取 

电源采用CS300 电化学测试系统，电镀时所施加

的周期换向方波脉冲示意图如图 2 所示。其中，周期

λ=10 ms，对于正向方波：ton=2 ms，间隔时间 4 ms；
对于反向方波：ton=1 ms，间隔时间 3 ms，正向峰值

电流密度为反向峰值电流密度的 5 倍。本文作者采用

周期换向方波脉冲而没有采用常用的方波脉冲，是因

为前者在电镀过程中对镀层有整平过程，这方面研究

本文作者已进行过相关研究。阳极采用蒸镀纯Au膜的

不锈钢，阴极采用蒸镀金种子层并且刻蚀有图形的硅

片。 
 

 

图 2  施镀电流示意图 

Fig.2  Scheme of electroplating current 
 
1.3.2  温度的选取 

电镀金时的温度范围一般为 40~60 ℃。升高电镀

温度，镀液的电导、离子活度都会随之升高，同时镀

液的分散能力也会得到改善[16]。因此，本实验适当提

高了电镀时的温度。经多次验证后，确定镀金温度为

80 ℃，此时自制的无氰镀金液仍然稳定。 
1.3.3  镀液 pH 值的选取 

实验中采用亚硫酸钠做为金离子的主络合剂，由

于含有亚硫酸根离子的溶液在pH＞9 或pH＜6.5 时，

亚硫酸根离子易发生不稳定反应，导致镀液不稳定。

因此，含有亚硫酸根离子的镀金液pH值宜控制在 8~9
较佳[11, 16]。本实验中选择镀液pH值为 8.0，采用DELTA 
320 pH计对其测量并调节。 
 

1.4  电镀实验操作流程 
1) 将配制的无氰镀金液加热至 80 ℃，保温 0.5 h。 
2) 每次电镀前将阳极和阴极按如下步骤处理：化

学除油→超声去离子水清洗→酸洗→超声去离子水清

洗。并将实验装置按图 1 所示组装好。 
3) 设置阴极电流密度J依次为 0.5、0.75、1.0、1.5、

2.0、2.5 A/dm2，开始电镀，每个J值下电镀 3 个试样，

对试样进行综合分析选出合适的J值。 
4) 在 3) 选定的 J 值下，设置电镀时间依次为 15、

30、45、60 和 90 min，每个时间段电镀 3 个试样。 



                                               中国有色金属学报                                             2008 年 10 月 1854 

所有试样电镀完成后用丙酮将光刻胶清洗干净，

然后用 JSM−5600LV 扫描电镜(SEM)观察分析表面形

貌，然后用环氧树脂封样，将凸点横截面打磨、抛光，

再用 SEM 从横截面角度观察凸点表面的平整性及凸

点内部的致密度，并测量凸点厚度。 

 
2  结果与分析 
 
2.1  阴极电流密度对 Au 凸点表面微观形貌的影响 

选取阴极电流密度J依次为 0.50、0.75、1.0、1.5、
2.0、2.5 A/dm2，实施电镀。所得凸点表面微观形貌如

图 3 所示。从图中可以看出，J=0.5~1.0 A/dm2时，所

得凸点表面基本平整，未发现团簇或孔隙，表面晶粒

以J=0.75 A/dm2时最为细小。当J≥1.5 A/dm2后，随着

J的增大，凸点表面开始变得越来越粗糙，并且出现不

连续的团簇，团簇尺寸从J=1.5 A/dm2时的约 2 µm增大

到J=2.5 A/dm2时的约 8 µm，而且团簇之间的间隙清晰

可见。 

 
2.2  阴极电流密度对 Au 凸点内部致密度及表面平整

度的影响 
与图 3 相对应的凸点横截面形貌如图 4 所示。可

见，当J=0.5~1.0 A/dm2时，凸点内部致密、表面较平

整。当J=1.5~2.5 A/dm2时，随着J的增大，凸点致密度

开始下降，晶粒间横向孔隙变得越来越多，间隙变得

越来越大，甚至清晰地观察到树枝晶，如图 4(f)所示。

对照图 3 与 4 可以看出，凸点表面形貌越粗糙，其内

部致密度就越低。因此，要得到内部致密、表面平整、

质量较高的凸点，J就要保持在一定的数值范围之内。

本实验结果表明，该范围为J=0.5~1.0 A/dm2。 
 
2.3  阴极电流密度对 Au 凸点生长速度的影响 

图 5 所示为电镀时间 t=30 min 时，所得 Au 凸点

平均厚度随 J 的变化情况。可见，随着 J 的增大，Au
凸点平均厚度也增大，但增长幅度因 J 值而异。J 值

越大，凸点平均厚度增长幅度也越大。但参照图 3 和 

 

 
图 3  在相同温度和 pH 值、不同电流密度条件下电镀相同时间得到的 Au 凸点表面形貌 

Fig.3  Surface micrographs of Au bumps electroplated under different current densities (θ = 80 ℃, pH = 8.0, t = 30 min): (a) 0.5 

A/dm2; (b) 0.75 A/dm2; (c) 1.0 A/dm2; (d) 1.5 A/dm2; (e) 2.0 A/dm2; (f) 2.5 A/dm2
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图 4  在相同温度和 pH 值、不同电流密度条件下电镀相同时间得到的 Au 凸点横截面形貌 

Fig.4  Cross section micrographs of Au bumps electroplated under different current densities (θ = 80 ℃, pH=8.0, t =30 min): (a) 

0.5 A/dm2; (b) 0.75 A/dm2; (c) 1.0 A/dm2; (d) 1.5 A/dm2; (e) 2.0 A/dm2; (f) 2.5 A/dm2

 
 

 

图 5  凸点厚度与 J 之间的关系 

Fig.5  Relationship between Au bump thickness and current 

density 

图 4 可知，当J≥1.5 A/dm2时，Au凸点表面粗糙度太

大，内部致密度也太低，这种表面粗糙、内部疏松的

Au凸点会对电镀Au/Sn凸点中后续的电镀锡工艺产生

不良影响。因此，综合考虑Au凸点生长速度与凸点质

量两方面因素，选定J =1.0 A/dm2来制备Au凸点。 
现参照图 3~5 分析电流密度对电镀金凸点生长行

为的影响。 
总体来说，当J值较小(0.5~1.0 A/dm2)时，金离子

的消耗速率较低，凸点生长较慢，电极过程可能处于

电化学极化控制[17]，故金离子能比较均匀地沉积在阴

极表面，因此，所得凸点内部致密、表面平整；当J
值较大(1.5~2.5 A/dm2)时，金离子的消耗速率很高，凸

点生长速度较快，电极过程发生浓差极化[18]，故所得

凸点内部疏松、表面粗糙。但不管J取何值，阴极上最

初生长的镀层都是致密平整的。如图 4(e)和(f)所示，
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尽管凸点表面粗糙、致密度低，但最初生长的那一部

分还是致密平整的，只是随着电镀时间的延长才渐渐

变得疏松、不平整，甚至出现树枝晶。这是因为电镀

开始前，阴极表面处镀液成分与镀液本体成分相同，

施加电流时紧靠阴极表面的金离子立即被还原，形成

晶粒细致的金属膜而均匀地覆盖在基体表面上。 
 
2.4  电镀时间对 Au 凸点厚度的影响 

取J=1.0 A/dm2，只改变施镀时间(15~90 min)进行

电镀。所得部分Au凸点横截面SEM像如图 6 所示。可

见，该工艺条件下得到的Au凸点质量较高，即使电镀

时间长达 90 min，表面仍然平整，且内部致密。图 7
所示为该条件下得到的Au凸点平均厚度与施镀时间

之间的关系。很明显，二者之间存在良好的线性关系。

经计算可得本实验条件下凸点平均厚度y随电镀时间t
变化的关系式为 
 
y = 0.427 t 
 

因此，可以通过控制电镀时间来精确控制 Au 凸

点生长厚度。 
 

 
图 6  电镀 90 min 所得 Au 凸点横截面形貌 

Fig.6  Cross section micrographs of Au bumps (θ = 80 ℃, pH 

= 8.0, J = 1.0 A/dm2): (a) 30 min; (b) 60 min; (c) 90 min 

 

 
图 7  凸点厚度与电镀时间的关系 

Fig.7  Relationship between Au bump thickness and 

depositing time 
 

在蒸镀有金种子层并且刻蚀有图形的硅片上电镀

Au，然后用丙酮超声清洗，去除光刻胶，得到 Au 凸

点的宏观形貌如图 8 所示。由图可知，Au 凸点边缘规

则、表面平整。 
 

 

图 8  Si 基体上电镀 Au 凸点的形貌 
Fig.8  Micrograph of Au bump on Si substrate 
 
3  结论 
 

1) 以含氯金酸钠的无氰镀金液为基础，电镀温度

θ = 80 ℃、镀液pH=8.0 时，J在 0.5~2.5 A/dm2范围内

逐渐增大，Au凸点生长速度单调增大；Au凸点表面晶

粒显示了“相对粗大→细小→相对粗大→粗大→树枝

晶”的变化过程。J=0.5~1.0 A/dm2时，Au凸点内部致

密、表面平整；J=1.5~2.5 A/dm2时， Au凸点表面粗

糙度急剧增大，在J=2.0 A/dm2时，出现了树枝晶，而

J=2.5 A/dm2时，树枝晶及其树枝晶之间的空洞已非常

明显，此时Au凸点质量已大大降低。 
2) 当J取值分别为 0.5、0.75 和 1.0 A/dm2时，以

J=0.75 A/dm2时得到的Au凸点表面晶粒最为细小致

密，但J越大时Au凸点生长速度越快，而且J=1.0 A/dm2
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时，无论是从表面形貌还是从横截面形貌来看，Au凸
点也都较致密和平整。综合考虑Au凸点生长速度与凸

点质量两个因素，选取J=1.0 A/dm2来制作Au凸点。 
3) 在电镀温度θ = 80 ℃、镀液pH = 8.0、J=1.0 

A/dm2的条件下电镀时，Au凸点平均厚度与施镀时间

之间存在良好的线性关系。因此，可以通过控制施镀

时间来得到预定厚度的Au凸点。 
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